Answer:
0.007 mol
Explanation:
We can solve this problem using the ideal gas law:
PV = nRT
where P is the total pressure, V is the volume, R the gas constant, T is the temperature and n is the number of moles we are seeking.
Keep in mind that when we collect a gas over water we have to correct for the vapor pressure of water at the temperature in the experiment.
Ptotal = PH₂O + PO₂ ⇒ PO₂ = Ptotal - PH₂O
Since R constant has unit of Latm/Kmol we have to convert to the proper unit the volume and temperature.
P H₂O = 23.8 mmHg x 1 atm/760 mmHg = 0.031 atm
V = 1750 mL x 1 L/ 1000 mL = 0.175 L
T = (25 + 273) K = 298 K
PO₂ = 1 atm - 0.031 atm = 0.969 atm
n = PV/RT = 0.969 atm x 0.1750 L / (0.08205 Latm/Kmol x 298 K)
n = 0.007 mol
Explanation:
In a double displacement reaction, there is an actual exchange of partners to form new compounds.
The reaction is given as shown below:
AB + CD → AD + CB
One of the following conditions serves as the driving force for a double replacement reaction:
- Formation of an insoluble compound or precipitate
- Formation of water or any other non-ionizing compound
- Liberation of a gaseous product.
The answer is 17.5kg.
To get the mass of an object you do Volume × Density. The SI unit of Mass is "kg."
Answer:
the smallest mass of material that can sustain a chain reaction
Explanation:
Critical mass refers to the smallest possible mass of a fissionable material that can sustain a chain reaction