THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
<span>This example represents the challenge of survival of the fittest. In this situation, the trees have a distinct advantage due to their above average height. This puts them in the best position to gain the resources that they need to survive, most notably, the sun. The smaller plants, however, do not have this advantage, and lose out to the trees.</span>
Answer:
4.75 is the equilibrium constant for the reaction.
Explanation:

Equilibrium concentration of reactants :
![[CO]=0.0590 M,[H_2O]=0.00600 M](https://tex.z-dn.net/?f=%5BCO%5D%3D0.0590%20M%2C%5BH_2O%5D%3D0.00600%20M)
Equilibrium concentration of products:
![[CO_2]=0.0410 M,[H_2]=0.0410 M](https://tex.z-dn.net/?f=%5BCO_2%5D%3D0.0410%20M%2C%5BH_2%5D%3D0.0410%20M)
The expression of an equilibrium constant is given by :
![K_c=\frac{[CO_2][H_2]}{[CO][H_2O]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D)


4.75 is the equilibrium constant for the reaction.
Answer:
The half life is 
Explanation:
The half life of a first order reaction is mathematically represented as
Substituting
for the rate constant

Determine if all the starting material is converted to the product.
<h3>What is TLC?</h3>
Because it can provide immediate and important information about a sample's purity and whether or not a reaction is still ongoing, TLC is a common technique in the organic chemistry lab. A TLC plate can be finished in less than 5 minutes when low polarity solvents are used.
<h3>Uses of TLC:-</h3>
TLC is a chromatographic method used to separate mixtures that are not volatile.
Thin-layer chromatography can be used to:-
- Assess a substance's purity.
- Identify the compounds present in a particular combination.
- Track the development of a reaction.
Learn more about TLC here:-
brainly.com/question/14393140
#SPJ4