Answer:
vHe / vNe = 2.24
Explanation:
To obtain the velocity of an ideal gas you must use the formula:
v = √3RT / √M
Where R is gas constant (8.314 kgm²/s²molK); T is temperature and M is molar mass of the gas (4x10⁻³kg/mol for helium and 20,18x10⁻³ kg/mol for neon). Thus:
vHe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol
vNe = √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
The ratio is:
vHe / vNe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol / √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
vHe / vNe = √20.18x10⁻³kg/mol / √4x10⁻³kg/mol
<em>vHe / vNe = 2.24</em>
<em />
I hope it helps!
Special Structures in Plant Cells. Most organelles are common to both animal and plant cells. However, plant cells also have features that animal cells do not have: a cell wall, a large central vacuole, and plastids such as chloroplasts.
C, potassium. Hope this helps.
Answer:
It's not correct. For balancing, we need to put the coefficients in the molecule, not in the athom. Because if you do this, you're creating another molecule, instead of a balacing, for which the reaction may not happen - but anyway, it would be another reaction.
The correct balacing is:
2NaOH + 1H2S → 1Na2S + 2H2O
Explanation:
Look: Na2OH does not even exist. OH has only one free link, so he can't - in normal conditions - make another one with any athom. That's why we should write 2NaOH instead of Na2OH. The first means "2 mols of NaOH".
use a strong base to neutralize, like NaOH, KOH, etc