II. sulfur (S) and carbon (C)
and
III. fluorine (F) and oxygen (O)
will form covalent bonds, so the answer will be:
e. II and III
Explanation:
To know is what type of bond is formed between atoms we need to look at the electronegativity difference between the atoms.
If the electronegativity difference is less than 0.4 there is a nonpolar covalent bond.
If the electronegativity difference is between 0.4 and 1.8 there is a polar covalent bond. (if is a metal involved we consider the bond to be ionic)
If the electronegativity difference is greater then 1.8 there is an ionic bond.
We have the following cases:
I. lithium (Li) and sulfur (S)
electronegativity difference = 2.5 (S) - 1 (Li) = 1.5 but because there is a metal involved the bond will be ionic
II. sulfur (S) and carbon (C)
electronegativity difference = 2.5 (S) - 2.5 (C) = 0 so the bond will be nonpolar covalent
III. fluorine (F) and oxygen (O)
electronegativity difference = 4 (F) - 3.5 (O) = 0.5 so the bond will be polar covalent bond.
Learn more about:
covalent and ionic bonds
brainly.com/question/1802971
#learnwithBrainly
It is possible for two other resonance structures to be connected but results in positive formal charge which isn't suited for a very electronegative atom such as chlorine.
<h3>What is a Lewis structure?</h3>
This is a type of diagram which depicts the bonding between atoms and lone pairs which are present in the molecule.
Adding two other resonance structures will also result in the poor overlap between the p-orbitals.
Read more about Lewis structure here brainly.com/question/1525249
#SPJ1
The symbol is ba. The number of neutrons equal the number of protons
Answer: - 1.86°C
Explanation:
The depression of freezing points of solutions is a colligative property.
That means that the depression of freezing points of solutions depends on the number of molecules or particles dissolved and not the nature of the solute.
To solve the problem follow these steps:
Data:
Tf = ?
solute = glucosa (this implies i factor is 1)
mass of solue = 36.0 g
mass of water = 500 g
Kf = 1.86 °/m
mm glucose = 180.0 g / mol
2) Formulas
Tf = Normal Tf - ΔTf
ΔTf = i * kf * m
m = number of moles of solute / kg of solvent
number of moles of solute = mass in grams / molar mass
3) Solution
number of moles of solute = 36.0 g / 180.0 g/mol = 0.2 mol
m = 0.2 mol / 0.5 kg = 1.0 m
ΔTf = i * Kb * m = 1 * 1.86 °C/m * 1 m = 1.86°C
Tf = 0°C - 1.86°C = - 1.86°C
Answer: - 1.86 °C
0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
<h3>HOW TO CALCULATE NUMBER OF MOLES?</h3>
The number of moles of a substance can be calculated using the following expression:
PV = nRT
Where;
- p = pressure (atm)
- v = volume (L)
- n = number of moles
- R = gas law constant
- T = temperature
0.75 × 11.2 = n × 0.0821 × 300
8.4 = 24.63n
n = 8.4 ÷ 24.63
n = 0.34 moles
Therefore, 0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
Learn more about number of moles at: brainly.com/question/1190311