Answer:
The change in the internal energy of the system -878 J
Explanation:
Given;
energy lost by the system due to heat, Q = -1189 J (negative because energy was lost by the system)
Work done on the system, W = -311 J (negative because work was done on the system)
change in internal energy of the system, Δ U = ?
First law of thermodynamics states that the change in internal energy of a system (ΔU) equals the net heat transfer into the system (Q) minus the net work done by the system (W).
ΔU = Q - W
ΔU = -1189 - (-311)
ΔU = -1189 + 311
ΔU = -878 J
Therefore, the change in the internal energy of the system -878 J
Answer:
An increase in the carbon dioxide concentration increases the rate at which carbon is incorporated into carbohydrate in the light-independent reaction, and so the rate of photosynthesis generally increases until limited by another factor.
Explanation:
Hello!
When finding the chemical formula of a compound, we will need to find the charges of each element/bond.
Looking at our period table, sodium has a +1 charge, written as Na 1+, and sulfate has a charge of -2, and it is written as SO4 2-.
Now, we need to make the charges equivalent. To do this, we need to "criss-cross" the charges. This means that sodium will need to additional atoms to make the charges equal, and sulfate will need one.
Therefore, the chemical formula for sodium sulfate is: Na2SO4.
The density is 3.144 g / cm^3.
<u>Explanation</u>:
If effective number of atom in NaCl type structure, z = 4
a = 705.2 pm ⇒ In centimeter = 705.2
10^-10
Na = 6.023
10^23
density = (molecular weight) (z) / (Na) (a^3)
where molecular weight of KI is 166 g,
Z represents the atomic number
density = (molecular weight) (z) / (Na) (a^3)
= (166
4) / (6.023
10^23)
(705.2
10^-10)
density = 3.144 g / cm^3.