Answer:
12.54
Step-by-step explanation:
5>0
Considering the given stem-and-leaf plot, the quartiles are given as follows:
- The first quartile is of 67.5.
- The second quartile, which is the median, is of 84.5.
- The third quartile is of 91.5.
<h3>What are the median and the quartiles of a data-set?</h3>
- The median of the data-set separates the bottom half from the upper half, that is, it is the 50th percentile.
- The first quartile is the median of the first half of the data-set.
- The third quartile is the median of the second half of the data-set.
There is an even number of elements(26), hence the median is the mean of the 13th and 14th elements, which are 83 and 86, hence:
Me = (83 + 86)/2 = 84.5.
The first half has 12 elements, hence the first quartile is the mean of the 6th and 7th elements, which are 67 and 68, hence:
Q1 = (67 + 68)/2 = 67.5.
The third half also has 12 elements, starting at the second 86, hence the third quartile is the mean of the 6th and 7th elements of this half, hence:
Q3 = (91 + 92)/2 = 91.5.
More can be learned about the quartiles of a data-set at brainly.com/question/28017610
#SPJ1
Answer:
50.27 units²
Step-by-step explanation:²
The standard equation of a circle with center at the origin is x² + y² = r², where r is the radius. Substituting 4 for x and 0 for y yields 4² + 0² = r², so we see immediately that r = 4 units.
The formula for the area of a circle is A = πr².
Here, with r = 4, the area is A = π(4 units)² = 16π units², or
50.27 units² to the nearest hundredth.
Answer:
if oq or and os are bisectors then MN is 40, also it is a perpendicular angle so it would also be 40
Step-by-step explanation:
Answer:
32
Step-by-step explanation:
We can write an algebraic equation to solve this situation:
, where x = first integer (small number) and x + 1 = the following integer.
Step 1: Combine like terms.
Step 2: Subtract 1 from both sides.
Step 3: Divide both sides by 2.
Therefore, the smaller number is 32 while the larger number is 33.
Have a lovely rest of your day/night, and good luck with your assignments! ♡