Answer:
What is the value of x.
If you know the value of x
then,
perimeter= x+12+7.71
and
if this traingle is an equilateral triangle
then,
area =½×7.71×x
In this all process you need to find x then all will be easy
Hope it helped you
If not then I am sorry for that
Bye
Since the problem is simply asking for the total tons of bananas the company sold, we can just simply add the tons of bananas the Eat Right Fruit Company sold to the two customers.
Doing this operation, we'll get:
ANSWER: The company sold

tons of bananas.
The numerical sum of the degree measures of m ∠DEA and m ∠AEF and m ∠DEF is 360°; The numerical measures of the angles is,
m ∠DEA = 56°
m ∠AEF = 158°
m ∠DEF = 146°
Based on the given data,
m ∠DEA= x + 30,
m ∠AEF= x + 132, and
m ∠DEF= 146 degrees
If the sum of two linear angles is 360° then, they are known as supplementary angles.
∠A + ∠B + ∠C = 360°, (∠A and ∠B and ∠C are linear angles.)
So,
We can write,
m ∠AEF + m ∠DEA + m ∠DEF = 360°
( x + 132) + (x + 30) + 146 = 360°
x + 30 + x + 132 + 146 = 360°
2x + 308 = 360°
2x = 360° - 308
x = 52/2
x =26
Now, we will substitute the value of x = 26° in the ∠DEA and ∠AEF, hence we get:
m ∠DEA = x + 30
m ∠DEA = 26 + 30
m ∠DEA = 56 degrees
Also,
m ∠AEF = x + 132
m ∠AEF = 26 + 132
m ∠AEF = 158
Hence,
m ∠DEA + m ∠AEF + m ∠DEF = 360°
56 + 158 + 146 = 360°
360° = 360°
Therefore,
Therefore, the numerical sum of the degree measures of m ∠DEA and m ∠AEF and m ∠DEF is 360°; The numerical measures of the angles is,
m ∠DEA = 56°
m ∠AEF = 158°
m ∠DEF = 146°
To learn more about information visit Supplementary angles :
brainly.com/question/17550923
#SPJ1
![\bf tan(x^o)=1.11\impliedby \textit{taking }tan^{-1}\textit{ to both sides} \\\\\\ tan^{-1}[tan(x^o)]=tan^{-1}(1.11)\implies \measuredangle x=tan^{-1}(1.11)](https://tex.z-dn.net/?f=%5Cbf%20tan%28x%5Eo%29%3D1.11%5Cimpliedby%20%5Ctextit%7Btaking%20%7Dtan%5E%7B-1%7D%5Ctextit%7B%20to%20both%20sides%7D%0A%5C%5C%5C%5C%5C%5C%0Atan%5E%7B-1%7D%5Btan%28x%5Eo%29%5D%3Dtan%5E%7B-1%7D%281.11%29%5Cimplies%20%5Cmeasuredangle%20x%3Dtan%5E%7B-1%7D%281.11%29)
plug that in your calculator, make sure the calculator is in Degree mode