Answer:

Explanation:
The bike's acceleration can be found by using the following suvat equation:

where
v is the final velocity of the bike
u is the initial velocity
a is the acceleration
s is the distance covered
For the bike in the problem,
u = 0
v = 7 m/s
d = 40 m
Solving the equation for a, we find the acceleration:

True true true true true true true true
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired
Answer:
437.5Kjoules
Explanation:
K.E=half multiply by mass multiply by square of velocity
=437.5Kjoules
It's kinda long but...
A tectonic setting where volcanic action occurs is called <span>a </span>hot-spot (intraplate<span>), which describes volcanic activity that occurs </span>within tectonic plates<span> and is generally NOT related to plate boundaries and plate movements.
</span>Hope this helps!!:)