Answer:
electrons
Explanation:
The photoelectric effect occurs when electrons are emitted from metal when the metal is struck by light of certain frequencies.
Some of the applications of this effect include photomultipliers (which are a key component in spectroscopy instruments) and night vision devices.
The reaction N2O4 (g) <--> 2NO2 (g) is endothermic, meaning that it consumes heat to move towards formation of the products.
According to Le Chatelier's Principle, therefore, if heat is added, more product (NO2) will be produced, and equilibrium would shift towards the right side. This is choice 3.
Answer:
The flow rate would be 22.5ml/hr
Explanation:
Volumetric flow rate = Mass flow rate ÷ density
Mass flow rate = 3mg/min = 3mg/min × 60min/1hr = 180mg/hr
Density = mass/volume = 2g/250ml = 0.008g/ml = 0.008g/ml × 1000mg/1g = 8mg/ml
Volumetric flow rate = 180mg/hr ÷ 8mg/ml = 22.5ml/hr
Answer:
phosphorus - least similar to barium
beryllium - most similar to barium
Explanation:
The formula of the chloride formed between barium and chlorine is BaCl2.
Barium is a metallic element and has the valency of +2. Beryllium is also a group two metal with a valency of +2. Hence the compound formed between beryllium and chlorine is BeCl2
Phosphorus is a nonmetal and forms a completely different chloride from BaCl2. The chloride of phosphorus is PCl5 and PCl3. These are least similar to BaCl2
The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.