Answer:
P_(pump) = 98,000 Pa
Explanation:
We are given;
h2 = 30m
h1 = 20m
Density; ρ = 1000 kg/m³
First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,
Thus, it can be expressed as;
P_(tank)+ P_(pump) = P_(nozzle)
Now, the pressure would be given by;
P = ρgh
So,
ρgh_1 + P_(pump) = ρgh_2
Thus,
P_(pump) = ρg(h_2 - h_1)
Plugging in the relevant values to obtain;
P_(pump) = 1000•9.8(30 - 20)
P_(pump) = 98,000 Pa
The distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
<h3>What is concave mirror?</h3>
A concave mirror has a reflective surface that is curved inward and away from the light source.
Concave mirrors reflect light inward to one focal point and it usually form real and virtual images.
<h3>
Object distance of the concave mirror</h3>
Apply mirrors formula as shown below;
1/f = 1/v + 1/u
where;
- f is the focal length of the mirror
- v is the object distance
- u is the image distance
when image height = object height, magnification = 1
u/v = 1
v = u
Substitute the given parameters and solve for the distance of the object from the mirror's vertex
1/f = 1/v + 1/v
1/f = 2/v
v = 2f
v = 2(19.5 cm)
v = 39 cm
Thus, the distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
Learn more about concave mirror here: brainly.com/question/27841226
#SPJ1
Answer:
4.7 s
Explanation:
The complete question is presented in the attached image to this solution.
v(t) = 61 - 61e⁻⁰•²⁶ᵗ
At what time will v(t) = 43 m/s?
We just substitute 43 m/s into the equation for the velocity of the diver and solve for t.
43 = 61 - 61e⁻⁰•²⁶ᵗ
- 61e⁻⁰•²⁶ᵗ = 43 - 61 = -18
e⁻⁰•²⁶ᵗ = (18/61) = 0.2951
In e⁻⁰•²⁶ᵗ = In 0.2951 = -1.2205
-0.26t = -1.2205
t = (1.2205/0.26) = 4.694 s = 4.7 s to the nearest tenth.
Hope this Helps!!!
Answer:
No
Explanation:
For infinite speed to be achevied, one must have no sink of energy to spend. The source of entropy in this example, is the tires hitting the surface, producing heat and friction. Not to mention that you'd still need fuel to start the car, and an infinite tunnel or track, which would be impossible and speed up to process of energy loss through entropy quicker.