Answer:
speed of electrons = 3.25 ×
m/s
acceleration in term g is 3.9 ×
g.
radius of circular orbit is 2.76 ×
m
Explanation:
given data
voltage = 3 kV
magnetic field = 0.66 T
solution
law of conservation of energy
PE = KE
qV = 0.5 × m × v²
v =
v =
v = 3.25 ×
m/s
and
magnetic force on particle movie in magnetic field
F = Bqv
ma = Bqv
a =
a =
a = 3.82 ×
m/s²
and acceleration in term g
a =
a = 3.9 ×
g
acceleration in term g is 3.9 ×
g.
and
electron moving in circular orbit has centripetal force
F =
Bqv =
r =
r =
r = 2.76 ×
m
radius of circular orbit is 2.76 ×
m
Answer:
a --> true, b --> false, c --> true, d -->false
Explanation:
a) since it stays floating the gravity force and the upqards push is the same
b) if it's balanced the rocket won't move from the ground, the force of the rocket, has to exceed the force of gravity
c) since it's going in a diretion the force of gravity is exceeding the force pushing it up
d) since that are speeding up at a rate, meaning growing, the force is unbalanced.
The lungs hold air that is taken in. Oxygen gas noticeable all around moves into the blood. The heart pumps to transports this oxygenated blood to cells in the body that need it to deliver vitality.
Explanation:
The given data is as follows.
Length (l) = 2.4 m
Frequency (f) = 567 Hz
Formula to calculate the speed of a transverse wave is as follows.
f = 
Putting the gicven values into the above formula as follows.
f = 
567 Hz = 
v = 544.32 m/s
Thus, we can conclude that the speed (in m/s) of a transverse wave on this string is 544.32 m/s.
Frequency represents the number of complete oscillations in one second. it is measured in Hertz (Hz). Electromagnetic waves are waves which do not require a material media for transmission. They travel with a speed of light.
The speed (m/s) of a wave is given by frequency (Hz) × Wavelength (m)
Speed is 300,000 km/sec or 300,000,000 m/s and the wavelength is 300,000 km or 300,000,000 m.
Frequency = speed÷ wavelength
= 300000000 ÷ 300000000 = 1
Therefore, the frequency of the wave is 1Hz