Answer:
Θ=0.01525 rad
or
Θ=0.87°
Explanation:
Given data
wavelength λ=2.5 µm =2.5×10⁻⁶m
Diameter d=0.20 mm =0.20×10⁻³m
To find
Angle Θ in radians and degree
Solution
Circular apertures have first dark fringe at
Θ=(1.22λ)/d
Substitute the given values
So
Θ=[1.22(2.5×10⁻⁶m)]/0.20×10⁻³m
Θ=0.01525 rad
or
Θ=0.87°
The aggregate of all the given moment of inertia's will be the moment of inertia of this system.
as, moment of inertia is given as
l = m * r^2
so, finding the moment of inertia of all the individual and adding them
<span>I=2∗<span>1^2</span>+1∗<span>2^2</span>+.5∗<span>2.5^2
</span>=9.125</span>
Answer:
Answered
Explanation:
1 and 3 are necessary
Every bit of force applied to the bumper will be transmitted to the cart EXCEPT for the force needed to accelerate the bumper. This is the net force on the bumper.
If the bumper was heavy then a significant amount of force might be needed to accelerate the bumper so the amount transmitted to the cart would be substantially reduced.
If the net force on the bumper is small then the amount transmitted to the cart is almost the entire force applied.
Some of those checkered polo
Answer:
Next we come to calculating the mechanical advantage of a lever. To do this, you divide the distance from the fulcrum, the point at which the lever pivots, to the applied force by the distance from the fulcrum to the resistance force.
Explanation: