
With the given values of
, we have

Try dealing with the powers of 10 first: On the right, we have

Meanwhile, the other values on the right reduce to

Then taking units into account, we end up with the equation

Now we solve for
:


or, if taking significant digits into account,

14-needle heading west
15-the strength of the current and the distance
Answer:
m³/(kg⋅s²)
Explanation:
Hello.
In this case, since the involved formula is:

By writing a dimensional analysis with the proper algebra handling, we obtain:
![N[=]G*\frac{kg*kg}{m^2}\\ \\kg*\frac{m}{s^2}[=]G *\frac{kg*kg}{m^2}\\\\G[=]\frac{kg*m*m^2}{kg^2*s^2}\\ \\G[=]\frac{m^3}{kg*s^2}](https://tex.z-dn.net/?f=N%5B%3D%5DG%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%20%5C%5Ckg%2A%5Cfrac%7Bm%7D%7Bs%5E2%7D%5B%3D%5DG%20%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%5C%5CG%5B%3D%5D%5Cfrac%7Bkg%2Am%2Am%5E2%7D%7Bkg%5E2%2As%5E2%7D%5C%5C%20%5C%5CG%5B%3D%5D%5Cfrac%7Bm%5E3%7D%7Bkg%2As%5E2%7D)
Thus, answer is:
m³/(kg⋅s²)
Note that the [=] is used to indicate the units of G.
Best regards
Answer: The mass of the sculpture is 11.8kg
Explanation:
Using the equation of fundamental frequency of a taut string.
f = (1/2L)*√(T/μ) .... (Eqn1)
Where
f= frequency in Hertz =80Hz
T = Tension in the string = Mg
M represent the mass of the substance (sculpture) =?
g= 9.8m/s^2
L= Length of the string=90cm=0.9m
μ= mass density = mass of string /Length of string
mass of string =5g=0.005kg
L=0.9m
μ=0.005/0.9 = 0.0056kg/m
Using (Eqn1)
80= 1/(2*0.9) √(T/0.0056)
144= √(T/0.0056)
Square both sides
20736= T/0.0056
T= 116.12N
Recall that T =Mg
116.12= M * 9.8
M=116.12/9.8
M= 11.8kg
Therefore the mass of the sculpture is 11.8kg