1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reptile [31]
2 years ago
9

Fixed rate mortgage offer:

Engineering
2 answers:
Anna11 [10]2 years ago
6 0
Weird how my teaches never teach me this
Ket [755]2 years ago
4 0
Use a fixed mortgage calculator on calculator soup!!!
You might be interested in
weight of 1000 pounds is suspended from two cables. The allowable stress in the cables is 1500 psi. Find the minimum diameter fo
kari74 [83]

Answer:

The minimum diameter for each cable should be 0.65 inches.

Explanation:

Since, the load is supported by two ropes and the allowable stress in each rope is 1500 psi. Therefore,

(1/2)(Weight/Cross Sectional Area) = Allowable Stress

Here,

Weight = 1000 lb

Cross-sectional area = πr²

where, r = minimum radius for each cable

(1/2)(1000 lb/πr²) = 1500 psi

500 lb/1500π psi = r²

r = √1.061 in²

r = 0.325 in

Now, for diameter:

Diameter = 2(radius) = 2r

Diameter = 2(0.325 in)

<u>Diameter = 0.65 in</u>

7 0
2 years ago
An insulated piston-cylinder device contains 0.15 of saturated refrigerant-134a vapor at 0.8 MPa pressure. The refrigerant is no
Stells [14]

Answer:

Assumption:

1. The kinetic and potential energy changes are negligible

2. The cylinder is well insulated and thus heat transfer is negligible.

3. The thermal energy stored in the cylinder itself is negligible.

4. The process is stated to be reversible

Analysis:

a. This is reversible adiabatic(i.e isentropic) process and thus s_{1} =s_{2}

From the refrigerant table A11-A13

P_{1} =0.8MPa   \left \{ {{ {{v_{1}=v_{g}  @0.8MPa =0.025645 m^{3/}/kg } } \atop { {{u_{1}=u_{g}  @0.8MPa =246.82 kJ/kg } -   also  {{s_{1}=s_{g}  @0.8MPa =0.91853 kJ/kgK } } \right.

sat vapor

m=\frac{V}{v_{1} } =\frac{0.15}{0.025645} =5.8491 kg\\and \\\\P_{2} =0.2MPa  \left \{ {{x_{2} =\frac{s_{2} -s_{f} }{s_{fg }}=\frac{0.91853-0.15449}{0.78339}   = 0.9753 \atop {u_{2} =u_{f} +x_{2} }(u_{fg}) =  38.26+0.9753(186.25)= 38.26+181.65 =219.9kJ/kg \right. \\s_{1} = s_{2}

T_{2} =T_{sat @ 0.2MPa} = -10.09^{o}  C

b.) We take the content of the cylinder as the sysytem.

This is a closed system since no mass leaves or enters.

Hence, the energy balance for adiabatic closed system can be expressed as:

E_{in} - E_{out}  =ΔE

w_{b, out}  =ΔU

w_{b, out} =m([tex]u_{1} -u_{2)

w_{b, out}  = workdone during the isentropic process

=5.8491(246.82-219.9)

=5.8491(26.91)

=157.3993

=157.4kJ

4 0
2 years ago
Tensile Strength (MPa) Number-Average Molecular Weight (g/mol)
IceJOKER [234]

Answer:

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

\mathbf{M_n = 49163.56431  \ g/mol }

Explanation:

The question can be well structured in a table format as illustrated below:

Tensile Strength (MPa)            Number- Average Molecular Weight  (g/mol)

82                                                  12,700

156                                                 28,500

The tensile strength and number-average molecular weight for two polyethylene materials given above.

Estimate the number-average molecular weight that is required to give a tensile strength required above. Using the data given find TS (infinity) in MPa.

<u>SOLUTION:</u>

We know that :

T_S = T_{S \infty} - \dfrac{A}{M_n}

where;

T_S = Tensile Strength

T_{S \infty} = Tensile Strength (Infinity)

M_n = Number- Average Molecular Weight  (g/mol)

SO;

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

From equation (1) ; collecting the like terms; we have :

T_{S \infty} =82+ \dfrac{A}{12700}

From equation (2) ; we have:

T_{S \infty} =156+ \dfrac{A}{28500}

So; T_{S \infty} = T_{S \infty}

Then;

T_{S \infty} =82+ \dfrac{A}{12700} =156+ \dfrac{A}{28500}

Solving by L.C.M

\dfrac{82(12700) + A}{12700} =\dfrac{156(28500) + A}{28500}

\dfrac{1041400 + A}{12700} =\dfrac{4446000 + A}{28500}

By cross multiplying ; we have:

({4446000 + A})*  {12700} ={28500} *({1041400 + A})

(5.64642*10^{10} + 12700A) =(2.96799*10^{10}+ 28500A)

Collecting like terms ; we have

(5.64642*10^{10} - 2.96799*10^{10} ) =( 28500A- 12700A)

2.67843*10^{10}  = 15800 \ A

Dividing both sides by 15800:

\dfrac{ 2.67843*10^{10} }{15800} =\dfrac{15800 \ A}{15800}

A = 1695208.861

From equation (1);

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

Replacing A = 1695208.861 in the above equation; we have:

82= T_{S \infty} - \dfrac{1695208.861}{12700}

T_{S \infty}= 82 + \dfrac{1695208.861}{12700}

T_{S \infty}= \dfrac{82(12700) +1695208.861 }{12700}

T_{S \infty}= \dfrac{1041400 +1695208.861 }{12700}

T_{S \infty}= \dfrac{2736608.861 }{12700}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

From equation(2);

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

Replacing A = 1695208.861 in the above equation; we have:

156= T_{S \infty} - \dfrac{1695208.861}{28500}

T_{S \infty}= 156 + \dfrac{1695208.861}{28500}

T_{S \infty}= \dfrac{156(28500) +1695208.861 }{28500}

T_{S \infty}= \dfrac{4446000 +1695208.861 }{28500}

T_{S \infty}= \dfrac{6141208.861}{28500}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

We are to also estimate the number- average molecular weight that is required to give a tensile strength required above.

If the Tensile Strength (MPa) is 82 MPa

Definitely the average molecular weight will be = 12,700 g/mol

If the Tensile Strength (MPa) is 156 MPa

Definitely the average molecular weight will be = 28,500 g/mol

But;

Let us assume that the Tensile Strength (MPa) = 181 MPa for example.

Using the same formula:

T_S = T_{S \infty} - \dfrac{A}{M_n}

Then:

181 = 215.481- \dfrac{1695208.861 }{M_n}

Collecting like terms ; we have:

\dfrac{1695208.861 }{M_n} = 215.481-  181

\dfrac{1695208.861 }{M_n} =34.481

1695208.861= 34.481 M_n

Dividing both sides by 34.481; we have:

M_n = \dfrac{1695208.861}{34.481}

\mathbf{M_n = 49163.56431  \ g/mol }

5 0
3 years ago
What are the de Broglie frequencies and wavelengths of (a) an electron accelerated to 50 eV (b) a proton accelerated to 100 eV
DaniilM [7]

Answer:

(a) De-Brogie wavelength is 0.173 nm and frequency is 2.42 x 10^16 Hz

(b) De-Brogie wavelength is 2.875 pm and frequency is 4.8 x 10^16 Hz

Explanation:

(a)

First, we need to find velocity of electron. Since, it is accelerated by electric potential. Therefore,

K.E of electron = (1/2)mv² = (50 eV)(1.6 x 10^-19 J/1 eV)

(1/2)mv² = 8 x 10^(-18) J

Mass of electron = m = 9.1 x 10^(-31) kg

Therefore,

v² = [8 x 10^(-18) J](2)/(9.1 x 10^(-31) kg)

v = √1.75 x 10^13

v = 4.2 x 10^6 m/s

Now, the de Broglie's wavelength is given as:

λ = h/mv

where,

h = Plank's Constant = 6.626 x 10^(-34) kg.m²/s

Therefore,

λ = (6.626 x 10^(-34) kg.m²/s)/(9.1 x 10^(-31) kg)(4.2 x 10^6 m/s)

<u>λ = 0.173 x 10^(-9) m = 0.173 nm</u>

The frequency is given as:

Frequency = f = v/λ

f = (4.2 x 10^6 m/s)/(0.173 x 10^(-9) m)

<u>f = 2.42 x 10^16 Hz</u>

(b)

First, we need to find velocity of proton. Since, it is accelerated by electric potential. Therefore,

K.E of proton = (1/2)mv² = (100 eV)(1.6 x 10^-19 J/1 eV)

(1/2)mv² = 1.6 x 10^(-17) J

Mass of proton = m = 1.67 x 10^(-27) kg

Therefore,

v² = [1.6 x 10^(-17) J](2)/(1.67 x 10^(-27) kg)

v = √1.916 x 10^10

v = 1.38 x 10^5 m/s

Now, the de Broglie's wavelength is given as:

λ = h/mv

where,

h = Plank's Constant = 6.626 x 10^(-34) kg.m²/s

Therefore,

λ = (6.626 x 10^(-34) kg.m²/s)/(1.67 x 10^(-27) kg)(1.38 x 10^5 m/s)

<u>λ = 2.875 x 10^(-12) m = 2.875 pm</u>

The frequency is given as:

Frequency = f = v/λ

f = (1.38 x 10^5 m/s)/(2.875 x 10^(-12) m)

<u>f = 4.8 x 10^16 Hz</u>

6 0
3 years ago
thermal energy is being added to steam at 475.8 kPa and 75% quality. determine the amount of thermal energy to be added to creat
eduard

Answer:

q_{in} = 528.6\,\frac{kJ}{kg}

Explanation:

Let assume that heating process occurs at constant pressure, the phenomenon is modelled by the use of the First Law of Thermodynamics:

q_{in} = h_{g} - h_{mix}

The specific enthalpies are:

Liquid-Vapor Mixture:

h_{mix} = 2217.2\,\frac{kJ}{kg}

Saturated Vapor:

h_{g} = 2745.8\,\frac{kJ}{kg}

The thermal energy per unit mass required to heat the steam is:

q_{in} = 2745.8\,\frac{kJ}{kg} - 2217.2\,\frac{kJ}{kg}

q_{in} = 528.6\,\frac{kJ}{kg}

7 0
3 years ago
Other questions:
  • To 3 significant digits, what is the change of entropy of air in kJ/kgk if the pressure is decreased from 400 to 300 kPa and the
    15·1 answer
  • If you were choosing between two strain gauges, one which has a single resistor in a bridge that varies and one that has two res
    11·1 answer
  • Are spheroidized steels considered as composite? If so, what is the dispersed phase a)- No b)- Yes, Chromium Carbides c)- Yes, I
    12·1 answer
  • What are the four basic parts of process plan
    11·1 answer
  • A ballistic pendulum consists of a 3.60 kg wooden block on the end of a long string. From the pivot point to the center‐of‐mass
    6·1 answer
  • In water and wastewater treatment processes a filtration device may be used to remove water from the sludge formed by a precipit
    10·1 answer
  • A Wii remote flung from a hand through a TV, with a kinetic energy of 1.44J and a mass of 4.5kg. Whats the velocity?
    6·1 answer
  • Which outcome most accurately portrays the future for the timber company in the following scenario?
    9·1 answer
  • If an object has the same number of positive and negative charges, its electrical charge is
    12·1 answer
  • What are the available motor sizes for 2023 ariya ac synchronous drive motor systems in kw?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!