1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentinak56 [21]
3 years ago
5

A conical enlargement in a vertical pipeline is 5 ft long and enlarges the pipe diameter from 12 in. to 24 in. diameter. Calcula

te the magnitude and direction of the vertical force on this enlargement when 10 f t3/s of water flow upward through the line and the pressure at the smaller end of the enlargement is 30 psi.
Engineering
1 answer:
makkiz [27]3 years ago
6 0

Answer:

F_y = 151319.01N = 15.132 KN

Explanation:

From the linear momentum equation theory, since flow is steady, the y components would be;

-V1•ρ1•V1•A1 + V2•ρ2•V2•A2 = P1•A1 - P2•A2 - F_y

We are given;

Length; L = 5ft = 1.52.

Initial diameter;d1 = 12in = 0.3m

Exit diameter; d2 = 24 in = 0.6m

Volume flow rate of water; Q2 = 10 ft³/s = 0.28 m³/s

Initial pressure;p1 = 30 psi = 206843 pa

Thus,

initial Area;A1 = π•d1²/4 = π•0.3²/4 = 0.07 m²

Exit area;A2 = π•d2²/4 = π•0.6²/4 = 0.28m²

Now, we know that volume flow rate of water is given by; Q = A•V

Thus,

At exit, Q2 = A2•V2

So, 0.28 = 0.28•V2

So,V2 = 1 m/s

When flow is incompressible, we often say that ;

Initial mass flow rate = exit mass flow rate.

Thus,

ρ1 = ρ2 = 1000 kg/m³

Density of water is 1000 kg/m³

And A1•V1 = A2•V2

So, V1 = A2•V2/A1

So, V1 = 0.28 x 1/0.07

V1 = 4 m/s

So, from initial equation of y components;

-V1•ρ1•V1•A1 + V2•ρ2•V2•A2 = P1•A1 - P2•A2 - F_y

Where F_y is vertical force of enlargement pressure and P2 = 0

Thus, making F_y the subject;

F_y = P1•A1 + V1•ρ1•V1•A1 - V2•ρ2•V2•A2

Plugging in the relevant values to get;

F_y = (206843 x 0.07) + (1² x 1000 x 0.07) - (4² x 1000 x 0.28)

F_y = 151319.01N = 15.132 KN

You might be interested in
You just purchased a 400-L rigid tank for a client who works in the gas industry. The tank is delivered pre-filled with 3 kg of
solniwko [45]

Answer:

the pressure reading when connected a pressure gauge is 543.44 kPa

Explanation:

Given data

tank volume (V) = 400 L i.e 0.4 m³

temperature (T) =  25°C  i.e. 25°C + 273 = 298 K

air mass (m)  = 3 kg

atmospheric pressure  = 98 kPa

To find out

pressure reading

Solution

we have find out pressure reading by gauge pressure

i.e. gauge pressure = absolute pressure - atmospheric pressure

first we find absolute pressure (p) by the ideal gas condition

i.e pV = mRT

p = mRT / V

p = ( 3 × 0.287 × 298 ) / 0.4

p = 641.44 kPa

so

gauge pressure = absolute pressure - atmospheric pressure

gauge pressure = 641.44 - 98

gauge pressure = 543.44 kPa

6 0
3 years ago
Random question, does anyone here use Lego, do not answer unless that is a yes
Sophie [7]

Answer:

yes i have 2 huge bins of it

Explanation:

8 0
3 years ago
Read 2 more answers
Can someone help me with this maze shown below.
Gnoma [55]
We can’t see the maze
3 0
2 years ago
Many farms and ranches use electric fences to keep animals from getting into or out of specific pastures. When switched on, an e
Nikolay [14]

Answer:

Aluminum

Explanation:

The best material to use when creating an electric fence would be Aluminum. Aluminum wiring is incredibly durable and can be easily obtained. Since aluminum is a non-magnetic metal its conducting capabilities far exceed other metallic options in the market and is also why companies choose aluminum for their high tension cable wiring. Aside from being more expensive than other feasible options its durability and conducting capabilities make it easily the best option.

7 0
3 years ago
Read 2 more answers
a cantilever beam 1.5m long has a square box cross section with the outer width and height being 100mm and a wall thickness of 8
djverab [1.8K]

Answer:

a) 159.07 MPa

b) 10.45 MPa

c) 79.535 MPa

Explanation:

Given data :

length of cantilever beam = 1.5m

outer width and height = 100 mm

wall thickness = 8mm

uniform load carried by beam  along entire length= 6.5 kN/m

concentrated force at free end = 4kN

first we  determine these values :

Mmax = ( 6.5 *(1.5) * (1.5/2) + 4 * 1.5 ) = 13312.5 N.m

Vmax = ( 6.5 * (1.5) + 4 ) = 13750 N

A) determine max bending stress

б = \frac{MC}{I}  =  \frac{13312.5 ( 0.112)}{1/12(0.1^4-0.084^4)}  =  159.07 MPa

B) Determine max transverse shear stress

attached below

   ζ = 10.45 MPa

C) Determine max shear stress in the beam

This occurs at the top of the beam or at the centroidal axis

hence max stress in the beam =  159.07 / 2 = 79.535 MPa  

attached below is the remaining solution

6 0
3 years ago
Other questions:
  • A production plant has a requirement for a counter that will count 4,000 items before recycling and starting over. How many D fl
    15·1 answer
  • How do batteries and other types of power sources make physical computing systems more mobile?
    15·2 answers
  • If the bar assembly is made of a material having a yield stress of σY = 45 ksi , determine the minimum required dimensions h1 an
    7·1 answer
  • Why do electricians require critical thinking skills? In order to logically identify alternative solutions to problems in order
    8·1 answer
  • List two common units of measurement to describe height
    5·2 answers
  • What is the hardest part of thermodynamics?
    5·1 answer
  • PLEASE HELP WITH THIS ASAP! Thanks
    6·1 answer
  • Entor" by
    9·1 answer
  • Determine the maximum height (in inches) that a lift pump can raise water (0.9971 g/ml) from a well at normal atmospheric pressu
    10·1 answer
  • yolanda went to get her car fixed. it cost $50 for the part and $200 for each hour the mechanic worked on it. if x represents th
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!