Answer:
4.5kgm/s
Explanation:
Change in momentum is expressed as
Change in momentum = m(v-u)
M is the mass
V is the final velocity
u is the initial velocity
Given
m=0.45kg
v = 30m/s
u = 20m/s
Substitute
Change in momentum = 0.45(30-20)
Change in momentum = 0.45×10
Change in momentum = 4.5kgm/s
Given the following information we have 20 watermelons from mark and 10 fishes from kim therefore we add the longitude of Walmart to the latitude of sams club and end up with a total of 1,000 dish soaps then we convert that into inches which leaves us at 20,000,000 inches of cats then multiply that number to 10 giraffes and we get
1.989 × 10^30 kg and therefore the mass of the sun is 1.989 × 10^30 kg.
A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:

A. Six electrons
B. six protons
C. they are composed of two up quarks and one down quark.