Option B Oldest
Sedimentary rock formed gets deposited by a process called deposition which is caused by natural agents or forces such as water, ice, gravity, and wind. These sediments deposits in flat and horizontal layers with the oldest layers at the bottom and the younger layers lying at the top
Answer:
<h2>537.6 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 84 × 6.4
We have the final answer as
<h3>537.6 N</h3>
Hope this helps you
Answer:
The atoms ,molecules, or compound present at the start of a chemical reaction that parcitipate in the reaction are <u><em>the reactants.</em></u>
Explanation:
The chemical reaction is the way in which one substance reacts against another. So, a chemical reaction consists of the transformation of some substances into others, that is, the process of arranging atoms and bonds when chemical substances come into contact.
In a chemical reaction, the initial substances are called reactants, while the new substances obtained are called products.
So, <u><em>the atoms ,molecules, or compound present at the start of a chemical reaction that parcitipate in the reaction are the reactants.</em></u>
Can someone please answer this question I'm doing the test now?
Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.