Power in a wire where current is flowing can be calculated from the product of the square of the current and the resistance. Resistance is equal to the product of resistivity and length divided by the area of the wire. We do as follows:
Resistance = 2.44 × 10-8 ( 0.11) / (π)(0.0009)^2 = 1.055x10^-3 <span>Ω
P = I^2R = .170^2 (</span>1.055x10^-3 ) = 3.048x10^-5 W
Answer: The 6 kg rock sitting on a 3.2 m cliff.
Explanation:
The potential energy of an object of mass M that is at a height H above the ground us:
U = M*H*g
where g is the gravitational acceleration:
g = 9.8m/s^2
Then:
"An 8 kg rock sitting on a 2.2 m cliff"
M = 8kg
H = 2.2m
U = 8kg*2.2m*9.8 m/s^2 = 172.48 J
"a 6 kg rock sitting on a 3.2 m cliff"
M = 6kg
H = 3.2m
U = 6kg*3.2m*9.8m/s^2 = 188.16 J
You can see that the 6kg rock on a 3.2m cliff has a larger potential energy.
Based on the trend produced by the dose - response graph, it would be best to evacuate the residents in other to prevent the increasing percentage of deaths due to the rising level of pollutant A.
- The curve shows that the pollutant level in mg/kg of pollutant A is still increasing, hence, groundwater monitoring alone won't be the best decision to make.
- Since the pollutant level is still increasing, then the spill level still need effective monitoring.
- Evacuation of residents seems to be the best decision that should be taken based on the information interpreted on the graph.
Therefore, Evacuating residents to prevent rising death percentage is required as the pollutant level is yet to subside.
Learn more :brainly.com/question/24844489