C
Explanation:
This is because the other variables in the other choices are relative to different observers and hence are not good to use in an experiment because there will be a lot of inherent bias by the person conducting the experiment For example how one person views how strong or beautiful the maple or oak looks may be different from how another person perceives the same.
However, weight is an absolute SI unit and does not vary from experiment to experiment. It is, therefore, a non-biased variable to use in the experiment and determine which wood between oak and maple can hold more weight.
Answer;
A)S(t)=96t-16t² +432
B)it will take 9 seconds for the ball to reach the ground.
C)864feet
Explanation:
We were given an initial height of 432 feet.
And v(t)= 96-32t
A) we are to Find s(t), the function giving the height of the ball at time t
The position, or heigth, is the integrative of the velocity. So
S(t)= ∫(96-32)dt
S(t)=96t-16t² +K
S(t)=96t-16t² +432
In which the constant of integration K is the initial height, so K= 432
b) we need to know how long will the ball take to reach the ground
This is t when S(t)= 0
S(t)=96t-16t² +432
-16t² +96t +432=0
This is quadratic equation, if you solve using factorization method we have
t= -3 or t= 9
Therefore, , t is the instant of time and it must be a positive value.
So it will take 9 seconds for the ball to reach the ground.
C)V=s/t
Velocity= distance/ time
=96=s/9sec
S=96×9
=864feet
Answer:
The speed of the banana just before it hits the water is:
√(2 · g · h) = v
Explanation:
Hi there!
Before Emily throws the banana, its potential energy is:
PE = m · g · h
Where:
PE = potential energy.
m = mass of the banana.
g = acceleration of the banana due to gravity.
h = height of the bridge (distance from the bridge to the ground).
When the banana reaches the water, all its potential energy will have converted to kinetic energy. The equation for kinetic energy is as follows:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass of the banana.
v = speed.
Then, when the banana hits the water:
m · g · h = 1/2 · m · v²
multiply by 2 and divide by m both sides of the equation:
2 · g · h = v²
√(2 · g · h) = v
Answer:
≈ 6.68 m/s
Explanation:
A suitable formula is ...
vf^2 -vi^2 = 2ad
where vi and vf are the initial and final velocities, a is the acceleration, and d is the distance covered.
We note that if the initial launch direction is upward, the velocity of the ball when it comes back to its initial position is the same speed, but in the downward direction. Hence the problem is no different than if the ball were initially launched downward.
Then ...
vf = √(2ad +vi^2) = √(2·9.8 m/s^2·1.0 m+(5 m/s)^2) = √44.6 m/s
vf ≈ 6.68 m/s
The ball hits the ground with a speed of about 6.68 meters per second.
__
We assume the launch direction is either up or down.
Answer:
3.33 m
Explanation:
Pressure is the distributed force applied to the surface of an object per unit area. The force is applied perpendicular to the surface of the object. The SI unit of pressure is N/m² or Pa.
Hydrostatic pressure is the pressure that a fluid exerts at a point due to the force of gravity.
The relationship between pressure on the bottom of the container, atmospheric pressure and the pressure due to the depth of the fluid is given by:
