1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew-mc [135]
3 years ago
11

A cue ball with mass 170g hits a stationary number 8 ball, which has mass 160g. The cue ball

Physics
1 answer:
forsale [732]3 years ago
3 0

Answer:

0.49 m/s

Explanation:

The law of conservation of linear momentum states that the sum of momentum in a system before and after collision are same. Momentum is a product of mass and velocity of an object hence in this case

m_cu_c+m_8u_8=m_cv_u+m_8v_8

Where m represent mass, u and v represent the initial and final velocities respectively, subscripts c and 8 represent cue ball and number 8 ball respectively.

Since number 8 ball is initially at rest, its initial velocity is zero. Replacing mass of cue ball with 170 g while mass of number 8 ball with 160g, then taking final velocity of cue ball as 0.2 m/s and final velocity of 8 ball as 0.3 m/s then we get

170u_c+160*0=170*0.2+170*0.3\\u_c\approx 0.49 m/s

You might be interested in
Are there any exceptions to the rule that planets rotate with small axis tilts and in the same direction as they orbit the sun?
Alona [7]
<span>Venus, Uranus, and Pluto are exceptions</span>
4 0
3 years ago
What is angular velocity
butalik [34]

Answer:

angular velocity(ω) is the rate change of angular displacement.

ω=θ/t and it SI unit is rad/s

Explanation:

this is very similar with the definition of linear velocity (rate of change of displacement). it specifies the angular speed of an object and the axis about which the object is rotating.

7 0
3 years ago
A 170 kg astronaut (including space suit) acquires a speed of 2.25 m/s by pushing off with his legs from a 2600 kg space capsule
saw5 [17]

Explanation:

Mass of the astronaut, m₁ = 170 kg

Speed of astronaut, v₁ = 2.25 m/s

mass of space capsule, m₂ = 2600 kg

Let v₂ is the speed of the space capsule. It can be calculated using the conservation of momentum as :

initial momentum = final momentum

Since, initial momentum is zero. So,

m_1v_1+m_2v_2=0

170\ kg\times 2.25\ m/s+2600\ kg\times v_2=0

v_2=-0.17\ m/s

So, the change in speed of the space capsule is 0.17 m/s. Hence, this is the required solution.

8 0
3 years ago
A car speed off around a bend at a constant 10m/s explain why it's velocity is not constant
VARVARA [1.3K]
It's velocity is not constant as direction is changing.
 
We know, velocity is speed with direction, so if direction is changing, velocity can't be constant, doesn't matter that speed is constant.

Hope this helps!
8 0
3 years ago
Assuming a 8 kilogram bowling ball moving at 2 m/s bounces off a spring at the same speed that had before bouncing what is the a
Naya [18.7K]

a) 32 kg m/s

Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

p_i = m u = (8 kg)(2 m/s)=16 kg m/s

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

p_{fB}=m v_b =(8 kg)(-2 m/s)=-16 kg m/s

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

p_f = p_{fB}+p_{fS}

where p_{fS} is the momentum of the spring. For the conservation of momentum,

p_i = p_f\\p_i = p_{fB}+p_{fS}\\p_{fS}=p_i -p_{fB}=16 kg m/s -(-16 kg m/s)=32 kg m/s


b) -32 kg m/s

The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

\Delta p=p_{fb}-p_i=-16 kg m/s - 16 kg m/s=-32 kg m/s


c) 64 N

The change in momentum is equal to the product between the average force and the time of the interaction:

\Delta p=F \Delta t

Since we know \Delta t=0.5 s, we can find the magnitude of the force:

F=\frac{\Delta p}{\Delta t}=\frac{-32 kg m/s}{0.5 s}=-64 N

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.


d) The force calculated in the previous step (64 N) is larger than the force of 32 N.

5 0
3 years ago
Other questions:
  • A 91.5 kg football player running east at 2.73 m/s tackles a 63.5 kg player running east at 3.09 m/s. what is their velocity aft
    15·1 answer
  • Which of the following is a chemical equation that accurately represents what happens when sulfur and oxygen are produced from s
    12·2 answers
  • A dc motor with its rotor and filed coils connected in serieshas an internal resistance of
    6·1 answer
  • What method would you use to extract the salt from the salt water mixture?
    13·1 answer
  • An electric generator uses __________ to convert mechanical energy into electrical energy.
    14·1 answer
  • A 1,492.3-kg airplane travels down the runway. Each of its four engines provides a force of
    6·1 answer
  • A piece of fruit falls straight down. As it falls,
    9·1 answer
  • If a ball is dropped from a height of 10 m, hits the ground and bounces back up to a maximum height of 7.5 m, describe how the E
    5·1 answer
  • Talia is manufacturing rolls of wire for hanging pictures. She needs a material that is ..... so that it can easily be pulled in
    12·1 answer
  • a stone of mass 750 kg is thrown vertically upward with a velocity of 10m/s find the potential energy at the greatest height and
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!