1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brums [2.3K]
3 years ago
6

A scientist studies the strengths of different types of wood, including oak and

Physics
1 answer:
AfilCa [17]3 years ago
4 0

C

Explanation:

This is because the other variables in the other choices are relative to different observers and hence are not good to use in an experiment because there will be a lot of inherent bias by the person conducting the experiment For example how one person views how strong or beautiful the maple or oak looks may be different from how another person perceives the same.

However, weight is an absolute SI unit and does not vary from experiment to experiment. It is, therefore, a non-biased variable to use in the experiment and determine which wood between oak and maple can hold more weight.

You might be interested in
What percent of sample of AS-198 to decay to 1/8 its original
denis-greek [22]

Answer:

bannana

Explanation:

5 0
3 years ago
Water flows through a horizontal pipe. The diameter of the pipe at point b is larger than the diameter of the pipe at point a. W
Natalija [7]

The speed of the water is the greatest at point B

5 0
4 years ago
"Giant Swing", the seat is connected to two cables as shown in the figure (Figure 1) , one of which is horizontal. The seat swin
Bingel [31]
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N. 

<span>Fx = [(233 + 840)/g]*v²/7.5 </span>

<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>

<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>

<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>

<span>233 + 840 = Ti*cos40º </span>

<span>solve for Ti. (This is the answer to the part b) </span>

<span>Horizontally </span>

<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>

<span>Solve for Th </span>

<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>

<span>using v and Ti computed above.</span>
3 0
3 years ago
Three observers watch a train pull away from a station toward the right of the platform. Observer A is in one of the train’s car
juin [17]

Observer A is moving inside the train

so here observer A will not be able to see the change in position of train as he is standing in the same reference frame

So here as per observer A the train will remain at rest and its not moving at all

Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body

So here observer B will see the actual motion of train which is moving in forward direction away from the platform

Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction

So the distance between them will decrease at faster rate

Now as per Newton's II law

F = ma

Now if train apply the brakes the net force on it will be opposite to its motion

So we can say

- F = ma

a = \frac{-F}{m}

so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate

It is not affected by the gravity  because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train

So there is no effect on train motion



5 0
3 years ago
Enter your answer in the provided box. The mathematical equation for studying the photoelectric effect is hν = W + 1 2 meu2 wher
siniylev [52]

Answer:

v = 4.44 \times 10^5 m/s

Explanation:

By Einstein's Equation of photoelectric effect we know that

h\nu = W + \frac{1}{2}mv^2

here we know that

h\nu = energy of the photons incident on the metal

W = minimum energy required to remove photons from metal

\frac{1}{2}mv^2 = kinetic energy of the electrons ejected out of the plate

now we know that it requires 351 nm wavelength of photons to just eject out the electrons

so we can say

W = \frac{hc}{351 nm}

here we know that

hc = 1242 eV-nm

now we have

W = \frac{1242}{351} = 3.54 eV

now by energy equation above when photon of 303 nm incident on the surface

\frac{1242 eV-nm}{303 nm} = 3.54 eV + \frac{1}{2}(9.1 \times 10^{-31})v^2

4.1 eV = 3.54 eV + (4.55 \times 10^{-31}) v^2

(4.1 - 3.54)\times 1.6 \times 10^{-19}) = (4.55 \times 10^{-31}) v^2

8.96 \times 10^{-20} = (4.55 \times 10^{-31}) v^2

v = 4.44 \times 10^5 m/s

6 0
3 years ago
Other questions:
  • Explain why a greater frequency indicates greater energy in a wave.
    15·2 answers
  • WHICH OF THE FOLLOWING IS EQUIVALENT TO 700 MILLILITERS?
    13·2 answers
  • The position vector of a particle of mass 1.65 kg as a function of time is given by = (6.00 î + 4.15 t ĵ), where is in meters an
    10·1 answer
  • Sarah and her bicycle have a total mass of 40 kg. Her speed at the top of a 10 m high and 100m long hill is 5 m/s. If the force
    14·1 answer
  • A hilly road is spiral in shape.​
    8·1 answer
  • Why? I need some help I would like at least 1 answer <br><br><br> Thanks,<br> Vishnu
    10·1 answer
  • Some states authorize a to make healthcare decisions ------- for patients who can't make them because they're incapacitated. O a
    6·1 answer
  • Which of the following statement describes a nonpolar molecule
    6·2 answers
  • Beryllium has a charge of 2, and bromine has a charge of –1. which is the best name for the ionic bond that forms between them?
    9·1 answer
  • explain how potential and kinetic energy are at play when we talk about Newton's second law of motion
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!