5 ideas
1.SSS (side, side, side) SSS stands for "side, side, side" and means that we have two triangles with all three sides equal. ...
2.SAS (side, angle, side) ...
3.ASA (angle, side, angle) ...
4.AAS (angle, angle, side) ...
5.HL (hypotenuse, leg)
Answer:
216 yards
Step-by-step explanation:
You'd multiply the amount of string for each balloon (12 feet) by the 54 balloons he needs, and you get 648 feet. There are 3 feet in a yard so then you would divide 648 by 3 and get 216 yards
Recall Euler's theorem: if
, then
![a^{\phi(n)} \equiv 1 \pmod n](https://tex.z-dn.net/?f=a%5E%7B%5Cphi%28n%29%7D%20%5Cequiv%201%20%5Cpmod%20n)
where
is Euler's totient function.
We have
- in fact,
for any
since
and
share no common divisors - as well as
.
Now,
![37^{32} = (1 + 36)^{32} \\\\ ~~~~~~~~ = 1 + 36c_1 + 36^2c_2 + 36^3c_3+\cdots+36^{32}c_{32} \\\\ ~~~~~~~~ = 1 + 6 \left(6c_1 + 6^3c_2 + 6^5c_3 + \cdots + 6^{63}c_{32}\right) \\\\ \implies 32^{37^{32}} = 32^{1 + 6(\cdots)} = 32\cdot\left(32^{(\cdots)}\right)^6](https://tex.z-dn.net/?f=37%5E%7B32%7D%20%3D%20%281%20%2B%2036%29%5E%7B32%7D%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%201%20%2B%2036c_1%20%2B%2036%5E2c_2%20%2B%2036%5E3c_3%2B%5Ccdots%2B36%5E%7B32%7Dc_%7B32%7D%20%5C%5C%5C%5C%20~~~~~~~~%20%3D%201%20%2B%206%20%5Cleft%286c_1%20%2B%206%5E3c_2%20%2B%206%5E5c_3%20%2B%20%5Ccdots%20%2B%206%5E%7B63%7Dc_%7B32%7D%5Cright%29%20%5C%5C%5C%5C%20%5Cimplies%2032%5E%7B37%5E%7B32%7D%7D%20%3D%2032%5E%7B1%20%2B%206%28%5Ccdots%29%7D%20%3D%20%2032%5Ccdot%5Cleft%2832%5E%7B%28%5Ccdots%29%7D%5Cright%29%5E6)
where the
are positive integer coefficients from the binomial expansion. By Euler's theorem,
![\left(32^{(\cdots)\right)^6 \equiv 1 \pmod9](https://tex.z-dn.net/?f=%5Cleft%2832%5E%7B%28%5Ccdots%29%5Cright%29%5E6%20%5Cequiv%201%20%5Cpmod9)
so that
![32^{37^{32}} \equiv 32\cdot1 \equiv \boxed{5} \pmod9](https://tex.z-dn.net/?f=32%5E%7B37%5E%7B32%7D%7D%20%5Cequiv%2032%5Ccdot1%20%5Cequiv%20%5Cboxed%7B5%7D%20%5Cpmod9)
These equations do match up. All you have to do is find the solution to the first equation. After that, plug in that solution to the second equation. If it makes the equation true, then the equations match.
Hope this helps!