Answer: Option A. 6.022 x 10^23
Explanation:
Answer:
Phosphorous has the smallest atomic size.
Explanation:
As we know these elements belong to same period means there valence shell is the same. So moving from left to right along the period the shell number remains constant but the number of protons and electrons increases. So, due to increase in number of protons the nuclear charge increases hence attracts the valence electrons more effectively resulting in the decrease of atomic size.
Elements and their atomic radius are as follow,
<span><span>Magnesium 0.160 nm
</span><span>
Aluminium 0.130 nm
</span><span>
Silicon 0.118 nm
</span><span>
Phosphorus <span>0.110 nm</span></span></span>
Answer:
F centripetal force (tension) = 275.9 N
Explanation:
Given data:
Mass = 1.50 kg
Radius = 0.520 m
Velocity of ball = 9.78 m/s
Tension = ?
Solution:
F centripetal force (tension) = m.v² / R
F centripetal force (tension) = 1.50 kg . (9.78 m/s)² / 0.520 m
F centripetal force (tension) = 1.50 kg . 95.65 m²/s² / 0.520 m
F centripetal force (tension) = 143.5 kg. m²/s² / 0.520 m
F centripetal force (tension) = 275.9 N
To find the ratio of the the combination for the ion, write the charge of the cation as the subscript for the anion, and the charge of the anion as the subscript of the cation. This will make the charges effectively cancel and you will be left with a neutral ionic compound. Remember, that an ionic compound is made up of a metal and a nonmetal.
For Ca2+ and Cl-, you will get the neutral compound to be CaCl₂.