Answer:
hi what is your question?? say in English please
Initially, the velocity vector is
. At the same height, the x-value of the vector will be the same, and the y-value will be opposite (assuming no air resistance). Assuming perfect reflection off the ground, the velocity vector is the same. After 0.2 seconds at 9.8 seconds, the y-value has decreased by
, so the velocity is
.
Converting back to direction and magnitude, we get 
Answer: motion parallax
Explanation:
Motion parallax refers to a form of depth perception whereby objects that are closer to an individual appears to move at a faster speed than the objects that are far.
Therefore, Kate is riding on a train and notices that the wildflowers by the side of the tracks seem to be moving by much faster than the mountains in the distance is an example of motion parallax.
Answer:
(a). Index of refraction are
= 1.344 &
= 1.406
(b). The velocity of red light in the glass
2.23 ×
The velocity of violet light in the glass
2.13 ×
Explanation:
We know that
Law of reflection is

Here
= angle of incidence
= angle of refraction
(a). For red light
1 ×
=
× 
= 1.344
For violet light
1 ×
=
× 
= 1.406
(b). Index of refraction is given by

= 1.344


2.23 ×
This is the velocity of red light in the glass.
The velocity of violet light in the glass is given by

2.13 ×
This is the velocity of violet light in the glass.
Answer:
Explanation:
According to <u>Coulomb's Law:</u>
<em>"The electrostatic force
between two point charges
and
is proportional to the product of the charges and inversely proportional to the square of the distance
that separates them, and has the direction of the line that joins them".</em>
<em />
Mathematically this law is written as:
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Solving: