Answer:v nxfgdjngdnmgndjfnncnfndngndsnbxzmnfn
Explanation:
Answer:
astronauts age is 32 years
correct option is e 32 years
Explanation:
given data
travels = 20 light year
stay = 2 year
return = 52 years
to find out
astronauts aged
solution
we know here they stay 2 year so time taken in traveling is
time in traveling = ( 52 -2 ) = 50 year
so it mean 25 year in going and 25 years in return
and distance is given 20 light year
so speed will be
speed = distance / time
speed = 20 / 25 = 0.8 light year
so time is
time = 
time = 
time = 15 year
so age is 15 + 2 + 15
so astronauts age is 32 years
so correct option is e 32 years
Answer:
, 
Explanation:
The acceleration of the plane can be determined by means of the kinematic equation that correspond to a Uniformly Accelerated Rectilinear Motion.
(1)
Where
is the final velocity,
is the initial velocity,
is the acceleration and
is the distance traveled.
Equation (1) can be rewritten in terms of ax:
(2)
Since the plane starts from rest, its initial velocity will be zero (
):
Replacing the values given in equation 2, it is gotten:




So, The acceleration of the plane is
Now that the acceleration is known, the next equation can be used to find out the time:
(3)
Rewritten equation (3) in terms of t:



<u>Hence, the plane takes 26.92 seconds to reach its take-off speed.</u>
Answer:
The second ball
Explanation:
Both balls are under the effect of gravity, accelerating with exactly the same value. The first ball is dropped, therefore its initial velocity is zero. Since the second ball has horizontal and vertical velocity components, its initial velocity is given by:

The vertical component is zero, however, it has a horizontal velocity, so its initial speed is not zero, therefore the secong ball has the greater speed at ground level.
Explanation:
Below is an attachment containing the solution.