500 ml = 0.5 liters. that's what i'm getting
hope it helps
On Earth, the acceleration of gravity is 9.8 m/s² downward.
So any object with only gravity acting on it gains 9.8 m/s of
downward speed every second.
If the rock starts out moving upward at 10 m/s, then it will
continue upward for only (10/9.8) = 1.02 second, before
it stops rising and starts falling.
Its average speed during that time is (1/2) (10 + 0) = 5 m/s .
At an average speed of 5 m/s for 1.02 sec,
the rock rises
(5 m/s) x (1.02 sec) = 5.102 meters .
Answer:
With an Environmental Engineering and a broadcasting minor
You can work as an On Air personality that host programs that provide your audience with documentaries about the environments and project carried out by Environmental Engineer
and also you can work as a journalist that explore the world making research that will preserve the environment and leveraging the media as a broadcaster to provide this research findings as a video for you audience
Explanation:
In order to get a better understanding let define some terms
Environmental Engineer
:
Environmental engineers resolve and help prevent environmental problems. They work in many areas, including air pollution control, industrial hygiene, toxic materials control, and land management. The duties of an environmental engineer range from planning and designing an effective waste treatment plant to studying the effects of acid rain on a particular area. An environmental engineer is sometimes required to work outdoors, though most of her work is done in a laboratory or office setting. Career opportunities for environmental engineers exist in consulting, research, corporate, and government positions.
Broadcasting:
Broadcasting is the distribution of audio or video content to a dispersed audience via any electronic mass communications medium, but typically one using the electromagnetic spectrum (radio waves), in a one-to-many model.
A)<span>
dQ = ρ(r) * A * dr = ρ0(1 - r/R) (4πr²)dr = 4π * ρ0(r² -
r³/R) dr
which when integrated from 0 to r is
total charge = 4π * ρ0 (r³/3 + r^4/(4R))
and when r = R our total charge is
total charge = 4π*ρ0(R³/3 + R³/4) = 4π*ρ0*R³/12 = π*ρ0*R³ / 3
and after substituting ρ0 = 3Q / πR³ we have
total charge = Q ◄
B) E = kQ/d²
since the distribution is symmetric spherically
C) dE = k*dq/r² = k*4π*ρ0(r² - r³/R)dr / r² = k*4π*ρ0(1 -
r/R)dr
so
E(r) = k*4π*ρ0*(r - r²/(2R)) from zero to r is
and after substituting for ρ0 is
E(r) = k*4π*3Q(r - r²/(2R)) / πR³ = 12kQ(r/R³ - r²/(2R^4))
which could be expressed other ways.
D) dE/dr = 0 = 12kQ(1/R³ - r/R^4) means that
r = R for a min/max (and we know it's a max since r = 0 is a
min).
<span>E) E = 12kQ(R/R³ - R²/(2R^4)) = 12kQ / 2R² = 6kQ / R² </span></span>
Nuclear Fission s a power source with a very low environmental impact.