1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jarptica [38.1K]
3 years ago
14

PLEASE ASWR How heavy is the object if it takes 7N to push up a ramp that is 35m long and 9m high?

Physics
2 answers:
Afina-wow [57]3 years ago
8 0

Answer:

j

Explanation:

DiKsa [7]3 years ago
6 0

Answer:

e

Explanation:

You might be interested in
A 69.5-kg person throws a 0.0475-kg snowball forward with a ground speed of 31.5 m/s. A second person, with a mass of 57.5 kg, c
Leno4ka [110]

Answer:

- After throwing the snow, velocity of the thrower is 2.33 m/s

- the velocity of the receiver is 0.026 m/s

Explanation:

Given the data in the question;

Using conservation of momentum,

Initial thrower has a momentum of mv; m_{totalv

(69.5 kg + 0.0475 kg) × 2.35 m/s = 163.4366 kg.m/s

Now, When he throws it at 31.5 m/s, these constitutes a momentum of;

(0.0475 kg )(31.5 m/s) = 1.49625 kg.m/s

hence his momentum now is: 163.4366 - 1.49625 = 161.94035 kg.m/s

To get his velocity, we say;

161.94035 = mv

{ he lost weight of the snow ball so, m = 69.5 kg )

161.94035 = 69.5 × v

v = 161.94035 / 69.5

v = 2.33 m/s

Therefore, After throwing the snow, velocity of the thrower is 2.33 m/s

Next is the Receiver;

the receiver will gain momentum of 1.49625 kg.m/s

he has no momentum initially and after he catches the snow ball;

1.49625 kg.m/s = mv

1.49625 kg.m/s = ( 57.5 kg +  0.0475 kg ) × v

1.49625 kg.m/s = 57.5475 kg × v

v = ( 1.49625 kg.m/s ) / 57.5475 kg

v = 0.026 m/s

Therefore, the velocity of the receiver is 0.026 m/s

3 0
3 years ago
When you hear a noise, you usually know the direction from which it came even if you cannot see the source. This ability is part
adelina 88 [10]

Answer:

Check the explanation

Explanation:

Kindly check the attached image below to see the step by step explanation to the question above.

3 0
3 years ago
Estimate how far apart the rays of deepest red and deepest violet light are as they exit the bottom surface. assume nred = 1.57
Harlamova29_29 [7]
We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:
n_1sin(\theta_1)=n_2sin(\theta_2)
Where \theta_2 differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question, \Delta x is the distance between both rays.
\theta_{2red}=Asin(\frac{sin(30)}{1.57})\approx 18.5705
\theta_{2violet}=Asin(\frac{sin(30)}{1.60})\approx 18.21
At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:
d_{violet}=h.tan(\theta_{2violet})\approx 0.0132m
For red we have:
d_{red}=h.tan(\theta_{2red})\approx 0.0134m
We finally have:
\Delta x=d_{red}-d_{violet}\approx2.8\times10^{-4}m


6 0
3 years ago
A 72-kg skydiver is falling from 10000 feet. At an instant during the fall, the skydiver
MissTica

Answer:

Approximately 2.31\; \rm m \cdot s^{-2} (assuming that the acceleration due to gravity isg = 9.81\; \rm m \cdot s^{-2}.)

Explanation:

Assuming that g = 9.81\; \rm m \cdot s^{-2} the weight on this 72-kg skydiver would be W = m \cdot g = 72 \; \rm kg \times 9.81\; \rm m \cdot s^{-2} = 706.32\; \rm N (points downwards.)

Air resistance is supposed to act in the opposite direction of the motion. Since this skydiver is moving downwards, the air resistance on the skydiver would point upwards.

Therefore, the net force on this skydiver should be the difference between the weight and the air resistance on the skydiver:

\begin{aligned}F(\text{net force}) &= W - F(\text{air resistance})\\ &= 706.32\; \rm N - 540\; \rm N =166.32\; \rm N \end{aligned}.

Apply Newton's Second Law of motion to find the acceleration of this skydiver:

\begin{aligned}a &= \frac{F(\text{net force})}{m} \\ &= \frac{166.32\; \rm N}{72\; \rm kg} = 2.31\; \rm m \cdot s^{-2} \end{aligned}.

5 0
3 years ago
A 25kg box fell 200m with an acceleration of 5 m/s2. with what force did it hit the floor when it landed?
Marizza181 [45]
According to Newton's Second Law of motion, the net force acting on the object is equal to its mass multiplied by its acceleration. In formula, it is written as

Net Force =mass * acceleration
Net force = 25 kg * 5m/s^2
Net force = 125 Newtons
6 0
3 years ago
Other questions:
  • Find the height of a baseball with a mass of 0.15 kg that has a GPE of 73.5 J.<br><br> Help please?
    14·2 answers
  • Describe three important ways we use the electromagnetic spectrum in our everyday lives.
    11·1 answer
  • How does Newton's second law of motion can be used to calculate the acceleration of an object?
    11·1 answer
  • Weight is a force that depends on mass and ?
    9·1 answer
  • A. Calculate the electric potential energy stored in a capacitor that stores <img src="https://tex.z-dn.net/?f=3.40%20x%2010%5E%
    10·2 answers
  • Am i pertty and who do think is going to win the presidential election who do u want to win and why
    11·2 answers
  • The force between two charges is 1000 N. One has a charge of 2.0 x 10-5 C and one has a charge of 5.0 x 10-6 C. What is the dist
    7·1 answer
  • An electric current that continually reverses direction over time is known as an ??
    13·1 answer
  • When a space shuttle was launched, the astronauts onboard experienced an acceleration of 29.0 m/s2 . If one of the astronauts ha
    13·1 answer
  • Which of the following is an arithmetic sequence? A. 2, 1, 4, 3, 6, 5, …
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!