Net force is basically the force an object has when changing direction, so the answer would be D.
Answer:

Explanation:
A charge located at a point will experience a zero electrostatic force if the resultant electric field on it due to any other charge(s) is zero.
is located at the origin. The net force on it will only be zero if the resultant electric field intensity due to
and
at the origin is equal to zero. Therefore we can perform this solution without necessarily needing the value of
.
Let the electric field intensity due to
be +
and that due to
be -
since the charge is negative. Hence at the origin;

From equation (1) above, we obtain the following;

From Coulomb's law the following relationship holds;

where
is the distance of
from the origin,
is the distance of
from the origin and k is the electrostatic constant.
It therefore means that from equation (2) we can write the following;

k can cancel out from both side of equation (3), so that we finally obtain the following;

Given;

Substituting these values into equation (4); we obtain the following;


Answer:
The depth of focus achievable with those lenses is small.
Explanation:
A larger aperture makes it much harder to focus on more than one object. When using a telephoto lens (the ones the question is referring to), the depth of focus is very small. For example, using a telephoto lens to take a photo of a runner might get the runner in focus, but certainly not the track, or the audience behind them. If you look at photos, especially older photos, of Olympians in almost any sport you can see this.
Hope this helps!
Answer:
60m
Explanation:
According to one of the equation of motions, v² = u²+2as where;
S is the distance
u is the initial velocity
v is the final velocity
a is the acceleration
Since the arrow is shot upwards, the body will experience a negative acceleration due to gravity i.e a = -g
Therefore our equation will become;
v² = u² - 2gS
Given u = 40m/s, g = 10m/s², S = 75m
Substituting to get the final velocity of the arrow we will have;
v² = 40²-2(10)(75)
v² = 1600 - 1500
v² = 100
v = √100
v = 10m/s
Total distance traveled is speed of the object × time taken
Total distance traveled = 10 × 6
= 60m
The arrow has therefore traveled 60m after 6seconds