Answer:
C6H12O6+6O2--->6CO2+6H2O
Explanation:
So I went through all the answers and could not find the right one amongst. If I'm not wrong the reaction above is the reaction for respiration. The nearest answer is D but unfortunately the first reactant isn't in accordance with that which the question has given.
The concentration of the sodium chloride would be 0.082 M
<h3>Stoichiometric calculations</h3>
From the equation of the reaction, the ratio of AgCl produced to NaCl required is 1:1.
Mole of 46.6 g AgCl produced = 46.6/143.32 = 0.325 moles
Equivalent mole of NaCl = 0.325 moles.
Molarity of 0.325 moles, 3.95 L NaCl = mole/volume = 0.325/3.95 = 0.082 M
More on stoichiometric calculations can be found here: brainly.com/question/27287858
#SPJ1
Answer:
Xenon is less reactive.
Explanation:
Xenon is a noble gas with 8 valence electrons whereas bromine is a halogen with 7 and is very reactive.
Mechanical energy=
Kinetic energy + potential energy
Hope this helped!
Answer:
6.78 × 10⁻³ L
Explanation:
Step 1: Write the balanced equation
Mg₃N₂(s) + 3 H₂O(g) ⇒ 3 MgO(s) + 2 NH₃(g)
Step 2: Calculate the moles corresponding to 10.2 mL (0.0102 L) of H₂O(g)
At STP, 1 mole of H₂O(g) has a volume of 22.4 L.
0.0102 L × 1 mol/22.4 L = 4.55 × 10⁻⁴ mol
Step 3: Calculate the moles of NH₃(g) formed from 4.55 × 10⁻⁴ moles of H₂O(g)
The molar ratio of H₂O to NH₃ is 3:2. The moles of NH₃ produced are 2/3 × 4.55 × 10⁻⁴ mol = 3.03 × 10⁻⁴ mol.
Step 4: Calculate the volume corresponding to 3.03 × 10⁻⁴ moles of NH₃
At STP, 1 mole of NH₃(g) has a volume of 22.4 L.
3.03 × 10⁻⁴ mol × 22.4 L/mol = 6.78 × 10⁻³ L