I think it is this because compression stroke it needs to be compressed then open up when started.
The question is about unclear since no picture provided. But from the question, it could be guessed that the box is moving back and forth on the frictionless plane at the amplitude of A in simple harmonic motion.
Answer:
D. At x=0, it's acceleration is at a maximum
Explanation:
As the box move forward, it reaches point A and than move backward. Theoretically, the box will move backwards, through its origin, to point -A and then going forward.
Point A is the maximum displacement of the box in this case. At this point, the box instantaneously stop to go backward. Therefore the velocity at that moment is zero.
From point -A, the box travel forward and keep building up speed due to the release in potential energy of the spring. And at point x=0, the velocity become maximum. After point x=0, the velocity of the box slows down due to the conversion of kinetic energy to potential energy of the spring. And as it reaches point A, it reaches zero velocity.
The same can be said as the box travels backward from point A to -A
Answer:
A
Explanation:
Iron and gadlinium are both very easily made into magnetic substances. Cobalt is also capable of being magnetized. Aluminum, put in an alloy, can make a magnetic substance, but
Aluminum by itself is not able to be magnetized.
Answer:
The question is somewhat vague in that acceleration is not exactly defined:
Usually a = (v2 - v1) / t which would imply that
a = 32 / g = 32 / 9.8 = 3.27 the acceleration due to change in speed of the rocket
One can also say that the astronaut experiences an acceleration of 9.8 m/s^2 just by being motionless on the surface of the earth.
Then a = (32 - 9.8) / 9.8 = 2.27 due to the acceleration of the rocket
If we assume the first condition then
F = 65 kg * 3.27 * 9.8 m/s^2 = 2083 N
Answer: Subtract the kinetic energy of the block at x=0.02mx=0.02m from the kinetic energy of the block at x=0.00mx=0.00m.
Explanation: