Answer:
The velocity in the pipe is 5.16m/s. The pipe diameter for the second fluid should be 6.6 mm.
Explanation:
Here the first think you have to consider is the definition of the Reynolds number (
) for flows in pipes. Rugly speaking, the Reynolds number is an adimensonal parameter to know if the fliud flow is in laminar or turbulent regime. The equation to calculate this number is:

where
is the density of the fluid,
is the viscosity, D is the pipe diameter and v is the velocity of the fluid.
Now, we know that Re=2100. So the velocity is:

For the second fluid, we want to keep the Re=2100 and v=5.16m/s. Therefore, using the equation of Reynolds number the diameter is:

Answer:
porosity = 0.07 or 7%
dry bulk density = 3.25g/cm3]
water content =
Explanation:
bulk density = dry Mass / volume of sample
dry mass = 0.490kg = 490g
volume = πr2h = 3.142 * 2 *2 *12 = 150.8cm3
density = 490/150.8 = 3.25g/cm3
porosity =
=
= 0.07 or 7%
water content =
= 7%
Answer:
Option D
All the above
Explanation:
Depending with the number of occupants in a building, the number of air conditioners required can either be increased or reduced. For instance, if the building is to be a classroom of over 50 students, 1 air-conditioner can't serve effectively. Similarly, the activity of occupants also dictate the amount of air conditioners required since if it's a gym room where occupants exercise often then the air conditioners required is different from if the room was to serve as a lounge. The appliances that also operate in a room require that air conditioners be installed as per the heat that may be generated by the appliances.
Answer:
a) 180 m³/s
b) 213.4 kg/s
Explanation:
= 1 m²
= 100 kPa
= 180 m/s
Flow rate

Volumetric flow rate = 180 m³/s
Mass flow rate

Mass flow rate = 213.4 kg/s