Answer:
The temperature change per compression stroke is 32.48°.
Explanation:
Given that,
Angular frequency = 150 rpm
Stroke = 2.00 mol
Initial temperature = 390 K
Supplied power = -7.9 kW
Rate of heat = -1.1 kW
We need to calculate the time for compressor
Using formula of compression



Put the value into the formula


We need to calculate the rate of internal energy
Using first law of thermodynamics


Put the value into the formula


We need to calculate the temperature change per compression stroke
Using formula of rate of internal energy


Put the value into the formula


Hence, The temperature change per compression stroke is 32.48°.
The 'period' of a pendulum . . . the time it takes to go back and forth once, and return to where it started . . . is
T = 2π √(length/gravity)
For this pendulum,
T = 2π √(0.24m / 9.8 m/s²)
T = 2π √0.1565 s²
T = 0.983 second
If you pull it to the side and let it go, it hits its highest speed at the BOTTOM of the swing, where all the potential energy you gave it has turned to kinetic energy. That's 1/4 of the way through a full back-and-forth cycle.
For this pendulum, that'll be (0.983s / 4) =
<em>(A). T = 0.246 second</em> <em><===</em>
<em></em>
Notice that the formula T = 2π √(length/gravity) doesn't say anything about how far the pendulum is swinging. For small angles, it doesn't make any difference how far you pull it before you let it go . . . the period will be the same for tiny swings, little swings, and small swings. It doesn't change if you don't pull it away too far. So . . .
<em>(B).</em> The period is the same whether you pulled it 3.5 or 1.75 . <em>T = 0.246 s.</em>
Falseeeeeeeeeeeeeeeeeeeeeeeeeeeee
Th equations to be used here are the following:
a = (v - v₀)/t
x = v₀t + 0.5at²
The speed of the fugitive is the sum of his own speed plus the speed of the train. Thus,
v₀ = 0 + 5.5 m/s = 5.5 m/s
v = 8 m/s + 5.5 m/s = 13.5 m/s
a.) We use the first equation to determine time
2.5 m/s² = (13.5 m/s - 5.5 m/s)t
Solving for t,
t = 3.2 seconds
b.) We use the answer in a) and the 2nd equation:
x = (5.5 m/s)(3.2 s) + 0.5(2.5 m/s²)(3.2 s)²
x = 30.4 meters