It should be gown, mask, gloves, and then goggles!
Answer:
The resultant strain in the aluminum specimen is 
Explanation:
Given that,
Dimension of specimen of aluminium, 9.5 mm × 12.9 mm
Area of cross section of aluminium specimen,

Tension acting on object, T = 35000 N
The elastic modulus for aluminum is,
The stress acting on material is proportional to the strain. Its formula is given by :

is the stress

Thus, The resultant strain in the aluminum specimen is 
Acceleration = ms^(-1)
= 60/4
=15 ms with the power of -1
Answer:
1.17
Explanation:
Given that,
The refractive index of ice wrt air = 1.31
The refractive index of rock salt wrt air = 1.54
We need to find the refractive index of rock salt with respect to ice.
We know that,
refractive index = (speed of light in air or vaccum)/( speed of light in that medium)
So,
The speed of light in ice = c/(1.31)
The speed of light in rock salt = c/(1.54)
So, the refractive index of rock salt with respect to ice is :

So, the required refractive index of rock salt wrt ice is 1.17.
Answer:
a) 7.02 W/m²
b) 1.53 J
Explanation:
Given
Amplitude of the electric wave, = 72.7 V/m
Area of flow, A = 0.0211 m²
Time taken, t = 10.3 s
To calculate the Intensity, S. We use the formula
I = E(rms)² / (cμ), where
E(rms) = E / √2 = 72.7 / √2
E(rms) = 72.7 / 1.4142
E(rms) = 51.41
c = 2.99*10^8
μ = 1.26*10^-6
I = 51.41² / [(2.99*10^8) (1.26 x 10^-6)]
I = 2642.99 / 376.74
I = 7.02 W/m²
U = energy = IAt
U = (7.02) * (0.0211) (10.3) J = 1.53 J