As the distance from a charged particle, "q", increases, the electric potential decreases.
<h3>
Electric potential between particles</h3>
The electric potential between particles is the work done in moving a unit charge from infinity to a certain point against the electrical resistance of the field.
V = Kq/r
where;
- K is Coulomb's constant
- q is the magnitude of the charge
- r is the distance between the charges
Thus, from the formula above, as the distance from a charged particle, "q", increases, the electric potential decreases.
Learn more about electric potential here: brainly.com/question/14306881
#SPJ1
Answer:
A sound wave can be affected by a lot of different variables. As an audio engineer some of the more common things we deal with involve air temperature, humidity and even wind. The first two affect the speed at which the wave travels, while wind can actually cause a phase like effect if it is blowing hard enough. Another big one though not directly related to the air is walls and other solid objects that cause the sound wave to bounce off of them and reflect. This causes a secondary wave that isn’t as strong as the first wave but is the cause of “muddy” sounding venues when you are indoors.
Explanation: