In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.
Most of the fusion occurs in the core.
In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.
Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.
Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.
After the core is almost entirely iron, the star is no longer in the Main Sequence.
So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.
Answer:
distance between the dime and the mirror, u = 0.30 m
Given:
Radius of curvature, r = 0.40 m
magnification, m = - 2 (since,inverted image)
Solution:
Focal length is half the radius of curvature, f = 
f = 
Now,
m = - 
- 2 = -
= 2 (2)
Now, by lens maker formula:


v =
(3)
From eqn (2):
v = 2u
put v = 2u in eqn (3):
2u = 
2 = 
2(u - 0.20) = 0.20
u = 0.30 m
The answer is c because the farther apart they are the greater there gravity is
It is defined by their wavelength. Different colors have different wavelengths. For example, radio waves have a really long wavelength, whereas gamma-rays have a very short wavelength.
The marbles that are 'more energetic' fall out of the tray, in the same way particles have enough energy to escape and turn into a gas.