Cd2+ + 2Hg Cd + Hg22+. Both Cd2+ + 2e Cd(s) -0.40 and Hg22+ + 2e 2Hg(l) 0.79
A chemical reaction known as an oxidation-reduction (redox) reaction includes the exchange of electrons between two substances.
Any chemical reaction in which the oxidation number of a molecule, atom, or ion changes by acquiring or losing an electron is referred to as an oxidation-reduction reaction. Decomposition Reaction is one of the several redox reactions.
This is the redox reaction's overall cell potential. Cd2+ + 2Hg Cd + Hg22+. Both Cd2+ + 2e Cd(s) -0.40 and Hg22+ + 2e 2Hg(l) 0.79
Reduction describes the increase in electrons. Oxidation and reduction always occur jointly because any loss of electrons by one substance must be followed by a gain of electrons by another.
Therefore, oxidation-reduction processes or simply redox reactions are other names for electron-transfer events.
Learn more about redox reactions here brainly.com/question/8727728.
#SPJ4.
Answer:
The error would be $13.
Explanation:
Given data:
Actual payment = $325
estimated payment = $312
Error = ?
Solution:
Error = Estimated payment - Actual payment
Error = $312 - $325
Error = -$13
we can discard the negative sign and consider the absolute value. The error would be $13.
Answer:
Reproductive cells(also known as sex cells) are gametes.
Explanation:
Have a great day :)
The answer is D. Heterogeneous mixture
In an ideal gas, there are no attractive forces between the gas molecules, and there is no rotation or vibration within the molecules. The kinetic energy of the translational motion of an ideal gas depends on its temperature. The formula for the kinetic energy of a gas defines the average kinetic energy per molecule. The kinetic energy is measured in Joules (J), and the temperature is measured in Kelvin (K).
K = average kinetic energy per molecule of gas (J)
kB = Boltzmann's constant ()
T = temperature (k)
Kinetic Energy of Gas Formula Questions:
1) Standard Temperature is defined to be . What is the average translational kinetic energy of a single molecule of an ideal gas at Standard Temperature?
Answer: The average translational kinetic energy of a molecule of an ideal gas can be found using the formula:
The average translational kinetic energy of a single molecule of an ideal gas is (Joules).
2) One mole (mol) of any substance consists of molecules (Avogadro's number). What is the translational kinetic energy of of an ideal gas at ?
Answer: The translational kinetic energy of of an ideal gas can be found by multiplying the formula for the average translational kinetic energy by the number of molecules in the sample. The number of molecules is times Avogadro's number: