Answer:
0.0005mol/kg
Explanation:
Molality = mole of solute/mass of solvent (kg)
From the question, we obtained the following data:
Mole of solute = 0.05mole
Mass of solvent = 100kg
Molality = 0.05/100
Molality = 0.0005mol/kg
The molality of the solution is 0.0005mol/kg
Answer: A.) Removing a few marbles from the petri dish and stirring the rest around as energy is added
B) The high temperature makes the gas molecules spread apart according to Charles's law because this law describes how a gas will behave at constant pressure.
Explanation: The phase transition from solid to liquid involves the use of energy to make the molecules present in solid to break the inter molecular forces and to start moving away from each other as in liquid. The molecules in solid are closely packed whereas in liquids they are loosely packed. Thus less number of molecules are present per unit volume in a liquid. Thus the marbles have to be removed to show less density and the energy has to supplied. Removing all but two marbles from the petri dish and shaking them vigorously as energy is added will give us a more disorderd state called gas in which the molecules are very far apart and the density is least.
B) According to Boyle's law the pressure is inversely proportional to the volume of the gas at constant temperature and constant number of moles.
(At constant temperature and number of moles)
According to Charle's law the volume is directly proportional to the temperature of the gas at constant pressure and constant number of moles.
(At constant pressure and number of moles)
Thus as temperature of the gas increases , the volume also increases, and the density decreases. the gas becomes lighter and thus rises up.
A liquid that steadily vaporizes at normal temperatures. Like Gasoline or Acetone.
Answer: The molar volume of any gas at standard pressure and standard temperature is 22.4 liters per mole.
Explanation:The ideal gas law is PV=nRT
P is pressure and if we consider standard pressure, then we have 1.00 atm.
V is volume and that is what we are trying to solve.
n is the number of moles, which is 1.00 moles since we are trying to determine the volume of a gas in one mole.
R is the ideal gas constant which equals
0.0821 (Liters x atmospheres)/(mole x kelvin)
T is the standard temperature which is 273 kelvin.
Rearrange the equation to solve for volume.
V = nRT/P
V = (1.00 mol)(0.0821 L atm/mol K)(273 K)/ 1.00 atm
V = 22.4 L