<span>Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be.
Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.</span>
Answer:
This is a double displacement reaction, C goes with Cl in the products side and O2 goes with H. All that is left is to balance the equation, making sure each side has equal amounts of atoms.
A bimolecular reaction is always a second-order reaction, but a second-order reaction is not always a bimolecular reaction.
The most important thing to take note of is that molecularity of a reaction is a concept applicable to only elementary reactions, meaning non-complex. In a way, elementary reactions are basic and achieved in one step. Complex reactions involve intermediate steps before achieving the desired reaction.
Molecularity is equal to the sum of the coefficients of the reactants, so two reactants give a second-order bimolecular reaction. However, second-order reactions can involve more than two reactants especially in complex reactions.