satellite originally moves in a circular orbit of radius R around the Earth. Suppose it is moved into a circular orbit of radius 4R.
(i) What does the force exerted on the satellite then become?
eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large(ii) What happens to the satellite's speed?<span>eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large(iii) What happens to its period?<span>eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large</span></span>
<span>
</span>
Answer:
I guess it's d because age environment heredity Nd maturation r more obvious factors if we compre with only physical fitness
Answer:
Explanation:
Given that
F=2x³
Work is given as
The range of x is from x=0 to x=D
W=-∫f(x)dx
Then,
W=-∫2x³dx from x=0 to x=D
W=- 2x⁴/4 from x=0 to x=D
W=-2(D⁴/4-0/4)
W=-D⁴/2
W=1/2D⁴
The correct answer is F
Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m