Recall that

where
and
are the initial and final velocities, respecitvely;
is the acceleration; and
is the change in position.
So we have


(Normally, this equation has two solutions, but we omit the negative one because the car is moving in one direction.)
Answer:
b) 472HZ, 408HZ
Explanation:
To find the frequencies perceived when the bus approaches and the train departs, you use the Doppler's effect formula for both cases:

fo: frequency of the source = 440Hz
vs: speed of sound = 343m/s
vo: speed of the observer = 0m/s (at rest)
v: sped of the train
f: frequency perceived when the train leaves us.
f': frequency when the train is getTing closer.
Thus, by doing f and f' the subjects of the formulas and replacing the values of v, vo, vs and fo you obtain:

hence, the frequencies for before and after tha train has past are
b) 472HZ, 408HZ
The answer would be B..
Since sand can heat up quickly, it will also cool off quickly. But water takes a long time to heat up and cool down.
Answer:
This link was diagram
Explanation:
https://doubtnut.app.link/FnsNC80Dccb