Answer:
True
Explanation:
Logic index is selection of values based on the logical streams. The values appear on the logical array. The levels are determined on the market investment performance. If there are many buyers available in the market the index will be high and the market will be bullish. If there are few or no investors available the market index will be low which means the market is bearish.
Answer:
Your question lacks the time required hence i will calculate the Average flow rate using a general concept and an assumed time value of 25 seconds
ANSWER : 104.904 ft^3/sec
Explanation:
General concept : Average flow rate is the volume of fluid per unit time through an area
Hence the average flow rate of the air conditioning unit of this room
Volume of the room / time taken for the air to cycle the room = v / t
assuming the time taken = 25 seconds
volume of room = width * length * height
= 14.1 * 15.5 * 12 = 2622.6 ft^3
Average flow rate = V/ t
= 2622.6 / 25 = 104.904 ft^3/sec
In Engineering, the thrust angle is checked by referencing: C. vehicle centerline.
<h3>What is a
thrust angle?</h3>
A thrust angle can be defined as an imaginary line which is drawn perpendicularly from the centerline of the rear axle of a vehicle, down the centerline.
This ultimately implies that, the thrust angle is a reference to the centerline (wheelbase) of a vehicle, and it confirms that the two wheels on both sides are properly angled within specification.
Read more on thrust angle here: brainly.com/question/13000914
#SPJ1
Answer:
0.5m^2/Vs and 0.14m^2/Vs
Explanation:
To calculate the mobility of electron and mobility of hole for gallium antimonide we have,
(S)
Where
e= charge of electron
n= number of electrons
p= number of holes
mobility of electron
mobility of holes
electrical conductivity
Making the substitution in (S)
Mobility of electron


Mobility of hole in (S)


Then, solving the equation:
(1)
(2)
We have,
Mobility of electron 
Mobility of hole is 
Answer:
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.
Step-by-step solution:
Step 1 of 5
Given data:-
The velocity of water is .
The water flow rate is.