Answer:
distance = 22.57 ft
superelevation rate = 2%
Explanation:
given data
radius = 2,300-ft
lanes width = 12-ft
no of lane = 2
design speed = 65-mph
solution
we get here sufficient sight distance SSD that is express as
SSD = 1.47 ut +
..............1
here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here
so put here value and we get
SSD = 1.47 × 65 ×2.5 +
solve it we get
SSD = 644 ft
so here minimum distance clear from the inside edge of the inside lane is
Ms = Rv ( 1 -
) .....................2
here Rv is = R - one lane width
Rv = 2300 - 6 = 2294 ft
put value in equation 2 we get
Ms = 2294 ( 1 -
)
solve it we get
Ms = 22.57 ft
and
superelevation rate for the curve will be here as
R =
..................3
here f is coefficient of friction that is 0.10
put here value and we get e
2300 = 
solve it we get
e = 2%
Answer:
investment 10 years from now is $1,238,000
.
Explanation:
given data
sum = $500,000
rate = 12% =0.12
total time = 10 year
solution
as present value After 2 years from now is $500,000
so time period is now = 8 year ( 10 - 2 )
so we apply future value formula that is
Future value = present value ×
............1
put here value we get
Future value = $500,000 ×
Future value = $500,000 × 2.476
Future value = $1,238,000
so investment 10 years from now is $1,238,000
.
Answer
For isotropic material plastic yielding depends upon magnitude of the principle stress not on the direction.
Tresca and Von Mises yield criteria are the yield model which is widely used.
The Tresca yield criterion stated that yielding will occur in a material only when the greatest maximum shear stress reaches a critical value.
max{|σ₁ - σ₂|,|σ₂ - σ₃|,|σ₃ - σ₁|} = σ_f
under plane stress condition
|σ₁ - σ₂| = σ_f
The Von mises yielding criteria stated that the yielding will occur when elastic energy of distortion reaches critical value.
σ₁² - σ₁ σ₂ + σ₂² = σ²_f
A. I believe, lmk if I’m right
Answer:
Schematics
Explanation:
A schematic is a detailed structured diagram or drawing. It employs illustrations to help the viewer understand detailed information on the machine or object being described. Its main aim is not to help the observer know what the object looks like physically. It is rather aimed at helping the viewer know how the machine works. This is achieved by only including key and important details to the drawing.
It is most times used in the blueprint and user guides of machines and gadgets used in the home to help users know how these things work so that they can do little fixings should there be such needs.