Answer:
The correct answer is A : Orientation dependence of normal and shear stresses at a point in mechanical members
Explanation:
Since we know that in a general element of any loaded object the normal and shearing stresses vary in the whole body which can be mathematically represented as

And 
Mohr's circle is the graphical representation of the variation represented by the above 2 formulae in the general oriented element of a body that is under stresses.
The Mohr circle is graphically displayed in the attached figure.
Answer:
(d) a and c are correct
Explanation:
METALS : Metal are those materials which has very high ductility, high modulus of elasticity, good thermal and electrical conductivity
for example : iron, gold ,silver, copper
ALLOYS: Alloys are those materials which are made up of combining of two or more than two metals these also have good thermal and electrical conductivity and me liable property
for example ; bronze and brass
so from above discussion it is clear that option (d) will be the correct option
Answer:
The correct option is;
B) Metamorphic Rocks
Explanation:
Zoisite, which is also referred to saualpite, is a metamorphic rock which is a hydroxy sorosilicate mineral formed from other types of rocks such as sedimentary, metamorphic and ingenious rocks in the process of their metamorphism under the presence high temperatures and pressures and mineral fluids which are hot
Zoiste is named after Sigmund Zois by Abraham Gottlob Werner in 1805 when Sigmund Zois sent Abraham Gottlob Werner the mineral specimen from Saualpe in 1805
Answer:
The shear strain is 0.05797 rad.
Explanation:
Shear strain is the ratio of change in dimension along the shearing load direction to the height of the plate under application of shear load. Width of the plate remains same. Length of the plate slides under shear load.
Step1
Given:
Height of the pad is 1.38 in.
Deformation at the top of the pad is 0.08 in.
Calculation:
Step2
Shear strain is calculated as follows:



For small angle of
,
can take as
.

Thus, the shear strain is 0.05797 rad.