1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elina [12.6K]
3 years ago
8

Explain why the slope of the line drawn in part C must be negative.

Mathematics
1 answer:
Nonamiya [84]3 years ago
6 0

because it is a negative line in the graph

You might be interested in
I need help on this math problem.
olga nikolaevna [1]
(not sure if this is right but)
x (to the 2nd power) + y (to the 2nd power) = cos (90) (to the 2nd power)
5 0
3 years ago
Henry puts 19 candies in each gift bag. He uses 551 candies. How many gift bags did he fill?
kozerog [31]

Answer:

29

Step-by-step explanation:

551/19=29

5 0
3 years ago
4. Solve the following inequality: 3y-1 less than 3
mylen [45]

3y - 1 < 3


Isolate the y. Treat the less than or equal like an equal sign.

Do the opposite of PEMDAS. First, add 1 to both sides

3y - 1 (+1) < 3 (+1)

3y < 4

Next, divide 3 from both sides

3y/3 < 4/3

y < 4/3

y < 4/3 is your answer

hope this helps

3 0
3 years ago
The profit P (in thousands of dollars) for a company spending an amount s (in thousands of dollars on advertising is
sattari [20]

Answer:

The company should spend $40 to yield a maximum profit.

The point of diminishing returns is (40, 3600).

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

Coordinate Planes

  • Coordinates (x, y) → (s, P)

Functions

  • Function Notation

Terms/Coefficients

  • Factoring/Expanding

Quadratics

<u>Algebra II</u>

Coordinate Planes

  • Maximums/Minimums

<u>Calculus</u>

Derivatives

  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

1st Derivative Test - tells us where on the function f(x) does it have a relative maximum or minimum

  • Critical Numbers

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle P = \frac{-1}{10}s^3 + 6s^2 + 400

<u>Step 2: Differentiate</u>

  1. [Function] Derivative Property [Addition/Subtraction]:                               \displaystyle P' = \frac{dP}{ds} \bigg[ \frac{-1}{10}s^3 \bigg] + \frac{dP}{ds} [ 6s^2 ] + \frac{dP}{ds} [ 400 ]
  2. [Derivative] Rewrite [Derivative Property - Multiplied Constant]:               \displaystyle P' = \frac{-1}{10} \frac{dP}{ds} \bigg[ s^3 \bigg] + 6 \frac{dP}{ds} [ s^2 ] + \frac{dP}{ds} [ 400 ]
  3. [Derivative] Basic Power Rule:                                                                     \displaystyle P' = \frac{-1}{10}(3s^2) + 6(2s)
  4. [Derivative] Simplify:                                                                                     \displaystyle P' = -\frac{3s^2}{10}  + 12s

<u>Step 3: 1st Derivative Test</u>

  1. [Derivative] Set up:                                                                                       \displaystyle 0 = -\frac{3s^2}{10}  + 12s
  2. [Derivative] Factor:                                                                                       \displaystyle 0 = \frac{-3s(s - 40)}{10}
  3. [Multiplication Property of Equality] Isolate <em>s </em>terms:                                   \displaystyle 0 = -3s(s - 40)
  4. [Solve] Find quadratic roots:                                                                         \displaystyle s = 0, 40

∴ <em>s</em> = 0, 40 are our critical numbers.

<u>Step 4: Find Profit</u>

  1. [Function] Substitute in <em>s</em> = 0:                                                                       \displaystyle P(0) = \frac{-1}{10}(0)^3 + 6(0)^2 + 400
  2. [Order of Operations] Evaluate:                                                                   \displaystyle P(0) = 400
  3. [Function] Substitute in <em>s</em> = 40:                                                                     \displaystyle P(40) = \frac{-1}{10}(40)^3 + 6(40)^2 + 400
  4. [Order of Operations] Evaluate:                                                                   \displaystyle P(40) = 3600

We see that we will have a bigger profit when we spend <em>s</em> = $40.

∴ The maximum profit is $3600.

∴ The point of diminishing returns is ($40, $3600).

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation (Applications)

5 0
2 years ago
A small pond contains nine catfish and five bluegill. If nine fish are caught at random, what is the probability that all of the
Advocard [28]

Answer:

c

Step-by-step explanation:

c is the correct answer because there is a pretty high possibility but not a extremely low possibility either

5 0
4 years ago
Other questions:
  • The bacteria took 1 hour and 40 minutes to fill the initial bottle. Explain how it only took 10 minutes to fill 3 additional emp
    15·2 answers
  • Which equation shows 4n=2(t-3) solves for t?
    15·1 answer
  • 12.5% of what number is 24? Please help and show work
    12·1 answer
  • Dan earns £224 over the course of a five-day week. How much is that per day?
    7·1 answer
  • What is greatest to least 1.001,1.1,1.403,1.078
    6·2 answers
  • How u do ratios and divide because i have bad memories and its to many steps?
    8·1 answer
  • Help
    6·1 answer
  • Assets, Beginning of Period 12,000
    5·1 answer
  • 1/5 of the shoes in a factory are green. If you pick a shoe, replace it, pick another shoe and replace it, and pick a third shoe
    12·1 answer
  • Find the area of the parallelogram shown below.<br> 6<br> 5
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!