The volume of 0. 250 mole sample of
gas occupy if it had a pressure of 1. 70 atm and a temperature of 35 °C is 3.71 L.
Calculation,
According to ideal gas equation which is known as ideal gas law,
PV =n RT
- P is the pressure of the hydrogen gas = 1.7 atm
- Vis the volume of the hydrogen gas = ?
- n is the number of the hydrogen gas = 0.25 mole
- R is the universal gas constant = 0.082 atm L/mole K
- T is the temperature of the sample = 35°C = 35 + 273 = 308 K
By putting all the values of the given data like pressure temperature universal gas constant and number of moles in equation (i) we get ,
1.7 atm×V = 0.25 mole ×0.082 × 208 K
V = 0.25 mole ×0.082atm L /mole K × 308 K /1.7 atm
V = 3.71 L
So, volume of the sample of the hydrogen gas occupy is 3.71 L.
learn more about ideal gas equation
brainly.com/question/4147359
#SPJ4
The reaction between K₂SO₄(aq) and SrI₂(aq) produces KI(aq) and SrSO₄(s) as products.
The reaction is
K₂SO₄(aq) + SrI₂(aq) → KI(aq)+ SrSO₄(s)
To balance the equation both side of the reaction should have same number of atoms in each element.
Right hand side of the reaction has 1 K, 1 I, 1 Sr, 1 S and 4 O atoms while 2 K, 2 I, 1 Sr,1 S and 4 O present in left hand side of the reaction.
Hence, number of I atoms and number of K atoms are not balanced.
To balance the K atoms we should add 2 before KI. Then I atoms will be 2 at the right hand side.
Hence, the balanced reaction equation is
K₂SO₄(aq) + SrI₂(aq) → 2KI(aq)+ SrSO₄(s)
Answer:
francium
Explanation:
the atomic radius increases from top to bottom in a group, and decreases from left to right across a period.