First of all, let's write the equation of motions on both horizontal (x) and vertical (y) axis. It's a uniform motion on the x-axis, with constant speed

, and an accelerated motion on the y-axis, with initial speed

and acceleration

:


where the negative sign in front of g means the acceleration points towards negative direction of y-axis (downward).
To find the distance from the landing point, we should find first the time at which the projectile hits the ground. This can be found by requiring

Therefore:

which has two solutions:

is the time of the beginning of the motion,

is the time at which the projectile hits the ground.
Now, we can find the distance covered on the horizontal axis during this time, and this is the distance from launching to landing point:
Answer:
0° FROM or 180° TO
Explanation:
A course deviation indicator or the CDI may be defined as an avionics tool or instrument that is used in the aircraft navigation which is used to determine an aircraft's lateral position with relation to a course.
While using the VOT service, we should tune the VOT frequency of the VOR receiver. And with the CDI leveled centered, the omnibearing selector or the OBS should read as 0° with the TO/FROM indicator showing 'FROM'. Else the OBS should read as 180° with the TO/FROM indication showing 'TO.'
Answer:
The fraction of kinetic energy lost in the collision in term of the initial energy is 0.49.
Explanation:
As the final and initial velocities are known it is possible then the kinetic energy is possible to calculate for each instant.
By definition, the kinetic energy is:
k = 0.5*mV^2
Expressing the initial and final kinetic energy for cars A and B:


Since the masses are equals:

For the known velocities, the kinetics energies result:




The lost energy in the collision is the difference between the initial and final kinectic energies:


Finally the relation between the lost and the initial kinetic energy:


The cryosphere is composed of all the frozen water on Earth.