Work done on the crate is 1411.2 J
Explanation:
Work done is defined as the product of force and the distance moved by the object. The unit of work done is in joules and denoted by the symbol J.
Work done = F * d
where F represents the force and d represents the distance moved by the object.
mass = 72 kg , distance moved by the object is given by 2.0 m
Force F = mass * gravity = 72 * 9.8
= 705.6 N =706 N.
Work done = 706 * 2.0 = 1412 J.
Answer:
The correct answer is:
(A) to the left
(B) at speed -0.8725 m/s
Explanation:
The given values are:
Plate 1:
Mass,
m₁ = 201 g
Velocity,
v₁ = +1.79 m/s
Plate 2:
Mass,
m₁ = 335 g
Velocity,
v₁ = -2.47 m/s
According to the conservation of momentum, we get
⇒ 
then,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
⇒
(to the left)
True statements that reflect why infants experience more fluid and electrolyte changes are that dehydration can upset the balance of electrolytes in an infant or child and the newborn is at risk of excessive water loss and hypernatremia as the result of high evaporative water loss through the skin.
As infants are not used to the environment around , they are more sensible towards problems such as Dehydration because of fast metabolism.
Dehydration can upset the balance of electrolytes in an infant or child. Children are especially vulnerable to dehydration due to their small size and fast metabolism, which causes them to replace water and electrolytes at a faster rate than adults.
Infants are particularly prone to the effects of dehydration because of their greater baseline fluid requirements (due to a higher metabolic rate), higher evaporative losses (due to a higher ratio of surface area to volume), and inability to communicate thirst or seek fluid.
The newborn is at risk of excessive water loss and hypernatremia as the result of high evaporative water loss through the skin, insensible water loss (IWL), as well as decreased capacity to concentrate the urine.
To Learn more about dehydration here
brainly.com/question/12261974?referrer=searchResults
#SPJ4
Answer:
Vertical acceleration 9.8 m/s² downward
Horizontal acceleration 0.0 m/s²
assuming no air resistance.
Answer:
t = 2 v₀ / g
Explanation:
For this projectile launch exercise we use the displacement equations
x = vox t
y = y₀ +
t - ½ g t²
As it is launched horizontally the vertical velocity is zero and the point of origin of the coordinate system is here, so y₀ is zero.
x = v₀ t
y = ½ g t²
They ask us for the time for which
x = y
vo t = ½ g t²
t = 2 v₀ / g