We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
Answer:
34883.7
Explanation:
Primero hay que convertir las dos unidades a la misma unidad-cm-
3km- 300000 cm
86mm- 8.6mm
Después hay que dividir
300000/8.6= 34883.7209302 ~ 34883.7
I think the correct answer from the choices listed above is option D. One advantage of using electromagnets in devices would be that electromagnets can <span>easily be turned on and off. Hope this answers the question. Have a nice day.</span>
Resistance per 1000 feet for gauge 14 wire is given as
R = 2.525 ohm
now if wire is of length 50 feet only then the resistance is given as


now if 11 A current flows through the wire then the voltage drop is given by ohm's law



so most appropriate answer in given options is
A. 1.8 Volts
Height of the waterfall is 0.449 m
its horizontal distance will be 2.1 m
now let say his speed is v with which he jumped out so here the two components of his velocity will be


here the acceleration due to gravity is 9.81 m/s^2 downwards
now we can find the time to reach the other end by y direction displacement equation


also from x direction we can say


now we have

we will plug in this value into first equation



now as we know that

t = 0.63 s


so his minimum speed of jump is 4.1 m/s