I think the answer would be letter a
Answer:
2400 J
Explanation:
Latent heat: This is also called hidden heat, it is the heat that is not detectable by the thermometer.
From the question,
Q = cm.................. Equation 1
Where Q = Energy, c = specific latent heat of the liquid, m = mass of the liquid.
Given: c = 4000 J/kg, m = 600 g =( 600/1000) kg = 0.6 kg
Substitute these values into equation 1
Q = 4000×0.6
Q = 2400 J
Hence the energy required is 2400 J
Answer:
a) F=20287.22N
b) t=2*10^-4s
Explanation:
E=1/2*m*v^2=0.5*7.8*10^-3kg*(530m/s)^2=1095.51J
The frictional force's work must be equal than the energy to stop the bullet.
So: W=F*d=F*0.054m=1095.51J, F=20287.22N
Considering the frictional force is constant, the bullet moves with constant aceleration.
a=F/m=20287.22N/7.8*10-2kg=2.6*10^6m/s^2
then d(t)=Vt-1/2*a*t^2,
5.4*10^-2m=530m/s*t-1.3*10^6m/s^2*t^2
I will calculate the time using the cuadratic formula:

with a=1.3*10^6, b=-530, c=5.4*10^-2
t=2*10^-4s
Answer:

Explanation:
The total momentum of the system must conserve by the law of momentum conservation.
( 1 )
If you consider the shock between the ball and the truck as totally elastic, and also if the truck is much more massive than the ball, you can assume that the truck does not move when the ball hits it.
Then the truck is always at rest
Hence, you have in the expression ( 1 ):
