Answer:
B. Particles of matter have spaces between them.
Explanation:
The particle nature model of matter is an model used to explain the properties and nature of matter. The statements of the particle nature model of matter are as follows :
1. Matter is made of small particles of atoms or molecules.
2. The particles of matter have space between them. The spaces between the particles are least in solids as they are closely packed together but are greatest in gases whose particles are far apart from each other.
3. The particles of matter are in constant motion at all times. Solids particles are not free to move due to strong molecular forces between the particles, but are constantly vibrating in their mean positions. Liquid particles free to move due to lesser molecular forces while gas molecules which have negligible intermolecular forces have the greatest ability to move.
4. The particles of matter are attracted to each other by intermolecular forces. These forces are greatest in solids and least in gases.
The correct option is B.
5C2O4^(2-)(aq) + 2MnO4^-(aq) + 16H+(aq) → 10CO2(g) + 2Mn2+(aq) + 8H2O(l)` is the chemical reaction and mole ratio between oxalate and permanganate in the titration reaction.
A chemical reaction is a procedure that causes one group of chemical components to change chemically into another. Chemical reactions, which can frequently be described by a chemical equation, traditionally include changes that only affect the locations of electrons in the formation and dissolution of chemical bonds between atoms, with no change to the nuclei (no change to the elements present). The study of chemical processes involving unstable and radioactive elements, where both electronic and nuclear changes may take place, is known as nuclear chemistry.
To know more about chemical reaction, click here,
brainly.com/question/11231920
#SPJ4
Mass i think hope and this helps u
The electromagnetic is a force that combines the effects of electrical charge and magnetism. The electromagnetic force can either attract or repel the particles on which it acts.