Answer:
a. 8.96 m/s b. 1.81 m
Explanation:
Here is the complete question.
a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.
What is her "takeoff" speed v
0
?
b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.
If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?
a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.
So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.
b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45
R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.
So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m
Answer:
0.625 c
Explanation:
Relative speed of a body may be defined as the speed of one body with respect to some other or the speed of one body in comparison to the speed of second body.
In the context,
The relative speed of body 2 with respect to body 1 can be expressed as :

Speed of rocket 1 with respect to rocket 2 :



Therefore, the speed of rocket 1 according to an observer on rocket 2 is 0.625 c
Answer:
4:28
Explanation:
4:28am
a 12 hour clock continues going up after 12 (1:00pm=13:00). minutes stay the same. 12:00pm=00:00. this shows 4:28am, so you count 4 after 00:00.
Thermo-Electrochemical converter (UTEC) is a thermodynamic cycle that does not account for the Carnot Efficiency.
The Carnot cycle is a hypothetical cycle that takes no account of entropy generation. It is assumed that the heat source and heat sink have perfect heat transfer. The working fluid also remains in the same phase, as opposed to the Rankine cycle, in which the fluid changes phase. A practical thermodynamic cycle, such as the Rankine cycle, would achieve at most 50% of the Carnot cycle efficiency under similar heat source and heat sink temperatures.
<h3>What is Thermo-Electrochemical converter?</h3>
In a two-cell structure, a thermo-electrochemical converter converts potential energy difference during hydrogen oxidation and reduction to heat energy.
It employs the Ericsson cycle, which is less efficient than the Carnot cycle. In a closed system, it converts heat to electrical energy. There are no external input or output devices.
This means there will be no mechanical work to be done, as well as no exhaust. As a result, Carnot efficiency is not taken into account in this cycle. Carnot efficiency is accounted for by other options such as turbine and engine.
Learn more about Thermo-Electrochemical converter here:
brainly.com/question/13040188
#SPJ4
Explanation:
As the source of sound waves approaches you the sound waves get closer together, increasing their frequency and the pitch of the sound. The opposite happens when the source of sound waves moves away from you