True ! Attending the funeral of a foreign leader IS fulfilling the role of head of state.
Explanation:
It is given that,
Initial speed of sprinter, u = 0
Final speed of sprinter, v = 10 m/s
Time taken, t = 1.28 s
a. We need to find the acceleration of sprinter. It can be calculated using first equation of motion as :



b. Final speed of the sprinter, v = 36 km/h
Time, t = 0.000355 h
Acceleration, 

Hence, this is the required solution.
- rocket science
- automotive research
- space research
This question involves the concepts of Newton's Second Law of Motion.
The acceleration of the bowling ball will be "0.67 m/s²".
<h3>Newton's Second Law of Motion</h3>
According to Newton's Second Law of Motion, when an unbalanced force is applied on an object, it produces an acceleration in it, in the direction of the applied force. This acceleration is directly proportional to the force applied and inversely proportional to the mass of the object. Mathematically,

where,
- a = acceleration = ?
- F = Magnitude of the applied force = 6 N
- m = Mass of the ball = 9 kg
Therefore,

a = 0.67 m/s²
Learn more about Newton's Second Law of Motion here:
brainly.com/question/13447525
#SPJ1
Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.